Measuring relative volatility in high-frequency data under the directional change approach

Q1 Economics, Econometrics and Finance
Shengnan Li, Edward P. K. Tsang, John O'Hara
{"title":"Measuring relative volatility in high-frequency data under the directional change approach","authors":"Shengnan Li,&nbsp;Edward P. K. Tsang,&nbsp;John O'Hara","doi":"10.1002/isaf.1510","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new approach in measuring relative volatility between two markets based on the directional change (DC) method. DC is a data-driven approach for sampling financial market data such that the data are recorded when the price changes have reached a significant amplitude rather than recording data under a predetermined timescale. Under the DC framework, we propose a new concept of DC micro-market relative volatility to evaluate relative volatility between two markets. Unlike the time-series method, micro-market relative volatility redefines the timescale based on the frequency of the observed DC data between the two markets. We show that it is useful for measuring the relative volatility in micro-market activities (high-frequency data).</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"29 2","pages":"86-102"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/isaf.1510","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a new approach in measuring relative volatility between two markets based on the directional change (DC) method. DC is a data-driven approach for sampling financial market data such that the data are recorded when the price changes have reached a significant amplitude rather than recording data under a predetermined timescale. Under the DC framework, we propose a new concept of DC micro-market relative volatility to evaluate relative volatility between two markets. Unlike the time-series method, micro-market relative volatility redefines the timescale based on the frequency of the observed DC data between the two markets. We show that it is useful for measuring the relative volatility in micro-market activities (high-frequency data).

Abstract Image

在方向变化方法下测量高频数据的相对波动性
本文提出了一种基于方向性变化(DC)方法来测量两个市场之间相对波动率的新方法。DC是一种数据驱动的方法,用于对金融市场数据进行抽样,当价格变化达到显著幅度时记录数据,而不是在预定的时间尺度下记录数据。在直流框架下,我们提出了直流微观市场相对波动率的新概念来评估两个市场之间的相对波动率。与时间序列方法不同,微观市场相对波动率根据两个市场之间观察到的直流数据的频率重新定义了时间尺度。我们表明,它对于衡量微观市场活动(高频数据)的相对波动性是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligent Systems in Accounting, Finance and Management
Intelligent Systems in Accounting, Finance and Management Economics, Econometrics and Finance-Finance
CiteScore
6.00
自引率
0.00%
发文量
0
期刊介绍: Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信