Spiking Neural Networks based Rate-Coded Logic Gates for Automotive Applications in BiCMOS

Hendrik M. Lehmann, Julian Hille, Cyprian Grassmann, V. Issakov
{"title":"Spiking Neural Networks based Rate-Coded Logic Gates for Automotive Applications in BiCMOS","authors":"Hendrik M. Lehmann, Julian Hille, Cyprian Grassmann, V. Issakov","doi":"10.1109/comcas52219.2021.9629011","DOIUrl":null,"url":null,"abstract":"Spiking Neural Networks (SNNs) represent the third generation of artificial neural networks. In this work, we evaluate the core element of SNN, the neuron circuit equivalent, in terms of temperature robustness for automotive applications. Thanks to the operating point stabilization, the proposed circuit-level neuron implementation achieves a broad frequency tuning range up to 42 MHz and operates over a wide temperature range from −40 °C to 125 °C. At the maximum spiking frequency of 42 MHz, the circuit consumes a DC power of only 300 nW. We use the proposed neuron circuit to realize two fundamental logic gates, AND and OR, by means of analog rate-encoded spiking neural networks. To the best of the authors’ knowledge, these are the first reported SNN-based logic gates measured over the automotive temperature range. We showcase the suitability of SNN circuit implementation for automotive applications. The circuits are realized in a 130 nm BiCMOS.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9629011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Spiking Neural Networks (SNNs) represent the third generation of artificial neural networks. In this work, we evaluate the core element of SNN, the neuron circuit equivalent, in terms of temperature robustness for automotive applications. Thanks to the operating point stabilization, the proposed circuit-level neuron implementation achieves a broad frequency tuning range up to 42 MHz and operates over a wide temperature range from −40 °C to 125 °C. At the maximum spiking frequency of 42 MHz, the circuit consumes a DC power of only 300 nW. We use the proposed neuron circuit to realize two fundamental logic gates, AND and OR, by means of analog rate-encoded spiking neural networks. To the best of the authors’ knowledge, these are the first reported SNN-based logic gates measured over the automotive temperature range. We showcase the suitability of SNN circuit implementation for automotive applications. The circuits are realized in a 130 nm BiCMOS.
基于脉冲神经网络的速率编码逻辑门在汽车BiCMOS中的应用
脉冲神经网络(snn)是第三代人工神经网络的代表。在这项工作中,我们从汽车应用的温度鲁棒性方面评估了SNN的核心元素,即神经元电路当量。由于工作点稳定,所提出的电路级神经元实现实现了高达42 MHz的宽频率调谐范围,并在−40°C至125°C的宽温度范围内工作。在最大尖峰频率为42 MHz时,电路的直流功耗仅为300 nW。我们使用所提出的神经元电路,通过模拟速率编码的尖峰神经网络实现两个基本逻辑门,即与和或。据作者所知,这是首次报道的在汽车温度范围内测量的基于snn的逻辑门。我们展示了SNN电路实现在汽车应用中的适用性。电路在130 nm的BiCMOS上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信