{"title":"Recommendation based on co-similarity and spanning tree with minimum weight","authors":"O. Baida, N. Hamzaoui, A. Sedqui, A. Lyhyaoui","doi":"10.1109/INTECH.2012.6457807","DOIUrl":null,"url":null,"abstract":"Recommender system is a system that helps users find interesting items. Actually, collaborative filtering technology is one of the most successful techniques in recommender system. In this article we propose a new approach based on the rating of the users that is similar to the active one. In the literature, we find a lot of approaches able to recommend items to the user. Aiming to offer a list of interesting items, we use a hybrid approach of collaborative filtering that performs better than others. Our collaborative filtering approach is based on the graph theory, so we use the dissimilarity matrix as a spanning tree with minimum weight based on Kruskal algorithm. We define a group of criteria that help to determine the best items to recommend without computing the rating prediction.","PeriodicalId":369113,"journal":{"name":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTECH.2012.6457807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Recommender system is a system that helps users find interesting items. Actually, collaborative filtering technology is one of the most successful techniques in recommender system. In this article we propose a new approach based on the rating of the users that is similar to the active one. In the literature, we find a lot of approaches able to recommend items to the user. Aiming to offer a list of interesting items, we use a hybrid approach of collaborative filtering that performs better than others. Our collaborative filtering approach is based on the graph theory, so we use the dissimilarity matrix as a spanning tree with minimum weight based on Kruskal algorithm. We define a group of criteria that help to determine the best items to recommend without computing the rating prediction.