{"title":"Classifying sufficiently connected PSC manifolds\nin 4 and 5 dimensions","authors":"Otis Chodosh, Chao Li, Yevgeny Liokumovich","doi":"10.2140/gt.2023.27.1635","DOIUrl":null,"url":null,"abstract":"We show that if $N$ is a closed manifold of dimension $n=4$ (resp. $n=5$) with $\\pi_2(N) = 0$ (resp. $\\pi_2(N)=\\pi_3(N)=0$) that admits a metric of positive scalar curvature, then a finite cover $\\hat N$ of $N$ is homotopy equivalent to $S^n$ or connected sums of $S^{n-1}\\times S^1$. Our approach combines recent advances in the study of positive scalar curvature with a novel argument of Alpert--Balitskiy--Guth. Additionally, we prove a more general mapping version of this result. In particular, this implies that if $N$ is a closed manifold of dimensions $4$ or $5$, and $N$ admits a map of nonzero degree to a closed aspherical manifold, then $N$ does not admit any Riemannian metric with positive scalar curvature.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.1635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
We show that if $N$ is a closed manifold of dimension $n=4$ (resp. $n=5$) with $\pi_2(N) = 0$ (resp. $\pi_2(N)=\pi_3(N)=0$) that admits a metric of positive scalar curvature, then a finite cover $\hat N$ of $N$ is homotopy equivalent to $S^n$ or connected sums of $S^{n-1}\times S^1$. Our approach combines recent advances in the study of positive scalar curvature with a novel argument of Alpert--Balitskiy--Guth. Additionally, we prove a more general mapping version of this result. In particular, this implies that if $N$ is a closed manifold of dimensions $4$ or $5$, and $N$ admits a map of nonzero degree to a closed aspherical manifold, then $N$ does not admit any Riemannian metric with positive scalar curvature.