MEMS Bimorph Fiber-Gripping Actuators*

M. S. Islam, S. Challa, M. H. Yassin, S. S. Vankayala, J. Beharic, C. Harnett
{"title":"MEMS Bimorph Fiber-Gripping Actuators*","authors":"M. S. Islam, S. Challa, M. H. Yassin, S. S. Vankayala, J. Beharic, C. Harnett","doi":"10.1109/MARSS55884.2022.9870247","DOIUrl":null,"url":null,"abstract":"We investigate mechanical tangling for adhesion of microelectromechanical systems (MEMS) to unconventional carrier materials in the assembly of stretchable electronics. Adhesion plays a crucial role in fabrication, but is a difficult task to realize even on continuous thin films of soft materials like silicone and polyimide. Adhesion becomes more challenging on discontinuous surfaces like fabric meshes, yet these substrates expand the MEMS universe to new materials, and provide new affordances like passage of electronic contacts from one side of a mesh to the other. Microgripper arrays are realized by microfabrication and release of strained metal-oxide bilayers. This paper describes a process that wraps a MEMS gripper around a conductive fiber and reverses the process using electric current to open the gripper. The gripper’s electrical resistance serves as a self-temperature sensor over the 20-500 °C range. Beyond their potential for adhering MEMS to fabrics and to flexible/stretchable substrates that are incompatible with or resistant to adhesives, these microgrippers illustrate how MEMS-based microrobots might interact with small-scale (<200 micron diameter) fibers in manipulation and locomotion activities. The key contribution of this paper over our earlier work is demonstrating the grippers’ temperature-dependent resistance, which offers a route to improved control of the gripper state.","PeriodicalId":144730,"journal":{"name":"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS55884.2022.9870247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate mechanical tangling for adhesion of microelectromechanical systems (MEMS) to unconventional carrier materials in the assembly of stretchable electronics. Adhesion plays a crucial role in fabrication, but is a difficult task to realize even on continuous thin films of soft materials like silicone and polyimide. Adhesion becomes more challenging on discontinuous surfaces like fabric meshes, yet these substrates expand the MEMS universe to new materials, and provide new affordances like passage of electronic contacts from one side of a mesh to the other. Microgripper arrays are realized by microfabrication and release of strained metal-oxide bilayers. This paper describes a process that wraps a MEMS gripper around a conductive fiber and reverses the process using electric current to open the gripper. The gripper’s electrical resistance serves as a self-temperature sensor over the 20-500 °C range. Beyond their potential for adhering MEMS to fabrics and to flexible/stretchable substrates that are incompatible with or resistant to adhesives, these microgrippers illustrate how MEMS-based microrobots might interact with small-scale (<200 micron diameter) fibers in manipulation and locomotion activities. The key contribution of this paper over our earlier work is demonstrating the grippers’ temperature-dependent resistance, which offers a route to improved control of the gripper state.
MEMS双晶片光纤夹持驱动器*
我们研究了在可拉伸电子组件中微机电系统(MEMS)与非常规载流子材料粘附的机械缠结。附着力在制造过程中起着至关重要的作用,但即使在硅树脂和聚酰亚胺等柔软材料的连续薄膜上也很难实现。在织物网格等不连续表面上的粘附变得更加具有挑战性,然而这些基板将MEMS领域扩展到新材料,并提供新的功能,如电子触点从网格的一侧传递到另一侧。微夹持器阵列是通过微加工和释放应变金属氧化物双层来实现的。本文描述了一种将MEMS夹持器包裹在导电纤维上,并利用电流将夹持器打开的过程。夹持器的电阻可作为20-500°C范围内的自温度传感器。除了将MEMS粘附到织物和与粘合剂不相容或耐粘合剂的柔性/可拉伸基板上的潜力之外,这些微夹具还说明了基于MEMS的微型机器人如何在操作和运动活动中与小规模(<200微米直径)纤维相互作用。本文对我们早期工作的关键贡献是展示了夹具的温度依赖电阻,这为改进夹具状态的控制提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信