Spectral problem for the Laplacian and a selfadjoint nonlinear elliptic boundary value problem

Natnael Gezahegn, Tadesse Abdi
{"title":"Spectral problem for the Laplacian and a selfadjoint nonlinear elliptic boundary value problem","authors":"Natnael Gezahegn, Tadesse Abdi","doi":"10.4314/sinet.v45i2.8","DOIUrl":null,"url":null,"abstract":"In this paper, we present some connections between the spectral problem, \n−Δu(x) = λ1u(x) in Ω,u(x) = 0 on ∂Ω \nand selfadjoint boundary value problem, \nΔu(x) − λ1u(x) + g(x, u(x)) = h(x) in Ω,u(x) = 0 on ∂Ω, \nwhere λ1 is the smallest eigenvalue of −∆, Ω ⊆ Rn is a bounded domain, h ∈ L2(Ω) and the nonlinear function g is a Caratheodory function satisfying a growth condition. We initially investigate the existence of solutions for the spectral problem by considering the selfadjoint boundary value problem. The selfadjoint boundary value problem is then considered for both existence and estimation results. We use degree argument in order to show that the selfadjoint boundary value problem has a solution instead of the Landesman-Lazer condition or the monotonocity assumption on the second argument of the function g. \nIn this paper, we present some connections between the spectral problem, \nand selfadjoint boundary value problem, \nwhere λ1 is the smallest eigenvalue of −∆, Ω ⊆ Rn is a bounded domain, h ∈ L2(Ω) and the nonlinear function g is a Caratheodory function satisfying a growth condition. We initially investigate the existence of solutions for the spectral problem by considering the selfadjoint boundary value problem. The selfadjoint boundary value problem is then considered for both existence and estimation results. We use degree argument in order to show that the selfadjoint boundary value problem has a solution instead of the Landesman-Lazer condition or the monotonocity assumption on the second argument of the function g.","PeriodicalId":275075,"journal":{"name":"SINET: Ethiopian Journal of Science","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SINET: Ethiopian Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/sinet.v45i2.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present some connections between the spectral problem, −Δu(x) = λ1u(x) in Ω,u(x) = 0 on ∂Ω and selfadjoint boundary value problem, Δu(x) − λ1u(x) + g(x, u(x)) = h(x) in Ω,u(x) = 0 on ∂Ω, where λ1 is the smallest eigenvalue of −∆, Ω ⊆ Rn is a bounded domain, h ∈ L2(Ω) and the nonlinear function g is a Caratheodory function satisfying a growth condition. We initially investigate the existence of solutions for the spectral problem by considering the selfadjoint boundary value problem. The selfadjoint boundary value problem is then considered for both existence and estimation results. We use degree argument in order to show that the selfadjoint boundary value problem has a solution instead of the Landesman-Lazer condition or the monotonocity assumption on the second argument of the function g. In this paper, we present some connections between the spectral problem, and selfadjoint boundary value problem, where λ1 is the smallest eigenvalue of −∆, Ω ⊆ Rn is a bounded domain, h ∈ L2(Ω) and the nonlinear function g is a Caratheodory function satisfying a growth condition. We initially investigate the existence of solutions for the spectral problem by considering the selfadjoint boundary value problem. The selfadjoint boundary value problem is then considered for both existence and estimation results. We use degree argument in order to show that the selfadjoint boundary value problem has a solution instead of the Landesman-Lazer condition or the monotonocity assumption on the second argument of the function g.
拉普拉斯谱问题和自伴随非线性椭圆边值问题
本文给出了谱问题Ω中的−Δu(x) = λ1u(x),∂Ω上的u(x) = 0与自共轭边值问题Δu(x)−λ1u(x) + g(x, Ω中的u(x)) = h(x),∂Ω上的u(x) = 0之间的联系,其中λ1是−∆的最小特征值,Ω∈Rn是有界域,h∈L2(Ω),非线性函数g是满足生长条件的Caratheodory函数。通过考虑自伴随边值问题,初步研究了谱问题解的存在性。然后考虑了自伴随边值问题的存在性和估计结果。我们使用程度参数表明,自伴边值问题有解,而不是Landesman-Lazer条件或monotonocity假设函数的第二个参数g。在本文中,我们提出一些光谱之间的连接问题,自伴边值问题,在最小的特征值λ1−∆,Ω⊆Rn有限域,h∈L2(Ω)和非线性函数g是一个Caratheodory函数满足增长的条件。通过考虑自伴随边值问题,初步研究了谱问题解的存在性。然后考虑了自伴随边值问题的存在性和估计结果。为了证明自伴随边值问题有解,我们使用了次参数来代替函数g的二次参数的Landesman-Lazer条件或单调性假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信