MART: Motion-Aware Recurrent Neural Network for Robust Visual Tracking

Heng Fan, Haibin Ling
{"title":"MART: Motion-Aware Recurrent Neural Network for Robust Visual Tracking","authors":"Heng Fan, Haibin Ling","doi":"10.1109/WACV48630.2021.00061","DOIUrl":null,"url":null,"abstract":"We introduce MART, Motion-Aware Recurrent neural network (MA-RNN) for Tracking, by modeling robust long-term spatial-temporal representation. In particular, we propose a simple, yet effective context-aware displacement attention (CADA) module to capture target motion in videos. By seamlessly integrating CADA into RNN, the proposed MA-RNN can spatially align and aggregate temporal information guided by motion from frame to frame, leading to more effective representation that benefits a tracker from motion when handling occlusion, deformation, viewpoint change etc. Moreover, to deal with scale change, we present a monotonic bounding box regression (mBBR) approach that iteratively predicts regression offsets for target object under the guidance of intersection-over-union (IoU) score, guaranteeing non-decreasing accuracy. In extensive experiments on five benchmarks, including GOT-10k, LaSOT, TC-128, OTB-15 and VOT-19, our tracker MART consistently achieves state-of-the-art results and runs in real-time.","PeriodicalId":236300,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV48630.2021.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce MART, Motion-Aware Recurrent neural network (MA-RNN) for Tracking, by modeling robust long-term spatial-temporal representation. In particular, we propose a simple, yet effective context-aware displacement attention (CADA) module to capture target motion in videos. By seamlessly integrating CADA into RNN, the proposed MA-RNN can spatially align and aggregate temporal information guided by motion from frame to frame, leading to more effective representation that benefits a tracker from motion when handling occlusion, deformation, viewpoint change etc. Moreover, to deal with scale change, we present a monotonic bounding box regression (mBBR) approach that iteratively predicts regression offsets for target object under the guidance of intersection-over-union (IoU) score, guaranteeing non-decreasing accuracy. In extensive experiments on five benchmarks, including GOT-10k, LaSOT, TC-128, OTB-15 and VOT-19, our tracker MART consistently achieves state-of-the-art results and runs in real-time.
用于鲁棒视觉跟踪的运动感知递归神经网络
我们通过建模鲁棒的长期时空表征,引入运动感知递归神经网络(MA-RNN)用于跟踪。特别是,我们提出了一个简单而有效的上下文感知位移注意(CADA)模块来捕捉视频中的目标运动。通过将CADA无缝集成到RNN中,所提出的MA-RNN可以在帧与帧之间对运动引导的时间信息进行空间对齐和聚合,从而在处理遮挡、变形、视点变化等时更有效地表示运动,从而使跟踪器受益。针对尺度变化,提出了一种单调边界盒回归(mBBR)方法,该方法在IoU分数的指导下迭代预测目标物体的回归偏移量,保证了精度的不下降。在包括GOT-10k, LaSOT, TC-128, OTB-15和vote -19在内的五个基准的广泛实验中,我们的跟踪器MART始终实现最先进的结果并实时运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信