Teste Geométrico no Processamento de Erros da Estimação de Estados Generalizada Desacoplada Rápida

A. Monteiro, Ellen Nogueira, E. M. Lourenço, O. L. Tortelli
{"title":"Teste Geométrico no Processamento de Erros da Estimação de Estados Generalizada Desacoplada Rápida","authors":"A. Monteiro, Ellen Nogueira, E. M. Lourenço, O. L. Tortelli","doi":"10.1109/INDUSCON51756.2021.9529911","DOIUrl":null,"url":null,"abstract":"This paper proposes the application of geometric tests in the bad data process of the Generalized State Estimation (GSE). The approach allows to determine the source of the bad data, which can be network topology or analog measurement errors, through the combination of normalized residues and geometric test. While generalized approach allows a detailed representation of the network substations, and, consequently, an improved bad data analysis, decoupled techniques are adopted to reduce the computational burden required by the extend network representation. The performance of the proposed algorithm is evaluated through simulations involving the IEEE 14 bus test system, entirely modeled at the bus-section level.","PeriodicalId":344476,"journal":{"name":"2021 14th IEEE International Conference on Industry Applications (INDUSCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th IEEE International Conference on Industry Applications (INDUSCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDUSCON51756.2021.9529911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes the application of geometric tests in the bad data process of the Generalized State Estimation (GSE). The approach allows to determine the source of the bad data, which can be network topology or analog measurement errors, through the combination of normalized residues and geometric test. While generalized approach allows a detailed representation of the network substations, and, consequently, an improved bad data analysis, decoupled techniques are adopted to reduce the computational burden required by the extend network representation. The performance of the proposed algorithm is evaluated through simulations involving the IEEE 14 bus test system, entirely modeled at the bus-section level.
快速解耦广义状态估计误差处理中的几何检验
提出了几何检验在广义状态估计(GSE)坏数据处理中的应用。该方法可以通过归一化残差和几何检验相结合的方法来确定坏数据的来源,坏数据可以是网络拓扑或模拟测量误差。虽然广义方法允许对网络变电站进行详细表示,并且因此改进了不良数据分析,但采用解耦技术来减少扩展网络表示所需的计算负担。通过IEEE 14总线测试系统的仿真评估了所提出算法的性能,该系统完全在总线段级别建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信