A Prompt-Aware Neural Network Approach to Content-Based Scoring of Non-Native Spontaneous Speech

Yao Qian, Rutuja Ubale, Matthew David Mulholland, Keelan Evanini, Xinhao Wang
{"title":"A Prompt-Aware Neural Network Approach to Content-Based Scoring of Non-Native Spontaneous Speech","authors":"Yao Qian, Rutuja Ubale, Matthew David Mulholland, Keelan Evanini, Xinhao Wang","doi":"10.1109/SLT.2018.8639697","DOIUrl":null,"url":null,"abstract":"We present a neural network approach to the automated assessment of non-native spontaneous speech in a listen and speak task. An attention-based Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) is used to learn the relations (scoring rubrics) between the spoken responses and their assigned scores. Each prompt (listening material) is encoded as a vector in a low-dimensional space and then employed as a condition of the inputs of the attention LSTM-RNN. The experimental results show that our approach performs as well as the strong baseline of a Support Vector Regressor (SVR) using content-related features, i.e., a correlation of r = 0.806 with holistic proficiency scores provided by humans, without doing any feature engineering. The prompt-encoded vector improves the discrimination between the high-scoring sample and low-scoring sample, and it is more effective in grading responses to unseen prompts, which have no corresponding responses in the training set.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We present a neural network approach to the automated assessment of non-native spontaneous speech in a listen and speak task. An attention-based Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) is used to learn the relations (scoring rubrics) between the spoken responses and their assigned scores. Each prompt (listening material) is encoded as a vector in a low-dimensional space and then employed as a condition of the inputs of the attention LSTM-RNN. The experimental results show that our approach performs as well as the strong baseline of a Support Vector Regressor (SVR) using content-related features, i.e., a correlation of r = 0.806 with holistic proficiency scores provided by humans, without doing any feature engineering. The prompt-encoded vector improves the discrimination between the high-scoring sample and low-scoring sample, and it is more effective in grading responses to unseen prompts, which have no corresponding responses in the training set.
基于内容的非母语自发语音评分的提示感知神经网络方法
我们提出了一种神经网络方法来自动评估听和说任务中的非母语自发语音。使用基于注意的长短期记忆递归神经网络(RNN)来学习口语回答与其指定分数之间的关系(评分规则)。每个提示(听力材料)被编码为低维空间中的向量,然后作为注意力LSTM-RNN输入的条件。实验结果表明,我们的方法在没有进行任何特征工程的情况下,与使用内容相关特征的支持向量回归器(SVR)的强基线表现一样好,即与人类提供的整体熟练度分数的相关性为r = 0.806。提示编码向量提高了高分样本和低分样本的区分能力,并且对训练集中没有对应响应的未见提示的响应进行分级更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信