CNN-based Prediction for Lossless Coding of Photographic Images

I. Schiopu, Yu Liu, A. Munteanu
{"title":"CNN-based Prediction for Lossless Coding of Photographic Images","authors":"I. Schiopu, Yu Liu, A. Munteanu","doi":"10.1109/PCS.2018.8456311","DOIUrl":null,"url":null,"abstract":"The paper proposes a novel prediction paradigm in image coding based on Convolutional Neural Networks (CNN). A deep neural network is designed to provide accurate pixel-wise prediction based on a causal neighbourhood. The proposed CNN prediction method is trained on the high-activity areas in the image and it is incorporated in a lossless compression system for high-resolution photographic images. The system uses the proposed CNN-based prediction paradigm as well as LOCO-I, whereby the predictor selection is performed using a local entropy-based descriptor. The prediction errors are encoded using a CALIC-based reference codec. The experimental results show a good performance for the proposed prediction scheme compared to state-of-the-art predictors. To our knowledge, the paper is the first to introduce CNN-based prediction in image coding, and demonstrates the potential offered by machine learning methods in coding applications.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The paper proposes a novel prediction paradigm in image coding based on Convolutional Neural Networks (CNN). A deep neural network is designed to provide accurate pixel-wise prediction based on a causal neighbourhood. The proposed CNN prediction method is trained on the high-activity areas in the image and it is incorporated in a lossless compression system for high-resolution photographic images. The system uses the proposed CNN-based prediction paradigm as well as LOCO-I, whereby the predictor selection is performed using a local entropy-based descriptor. The prediction errors are encoded using a CALIC-based reference codec. The experimental results show a good performance for the proposed prediction scheme compared to state-of-the-art predictors. To our knowledge, the paper is the first to introduce CNN-based prediction in image coding, and demonstrates the potential offered by machine learning methods in coding applications.
基于cnn的图像无损编码预测
提出了一种基于卷积神经网络(CNN)的图像编码预测范式。深度神经网络被设计用于基于因果邻域提供精确的逐像素预测。提出的CNN预测方法对图像中的高活动区域进行训练,并将其纳入高分辨率摄影图像的无损压缩系统中。该系统使用提出的基于cnn的预测范式以及LOCO-I,其中预测器选择使用基于局部熵的描述符执行。使用基于calic的参考编解码器对预测误差进行编码。实验结果表明,与现有的预测器相比,所提出的预测方案具有良好的性能。据我们所知,这篇论文首次将基于cnn的预测引入到图像编码中,并展示了机器学习方法在编码应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信