{"title":"X-ray Spectroscopy and Total Yield Measurements on a Microsecond X-Pinch","authors":"G. S. Jaar, R. K. Appartaim","doi":"10.1109/PPPS34859.2019.9009714","DOIUrl":null,"url":null,"abstract":"Emission spectra from a microsecond x-pinch were studied in the soft x-ray region which give information about the radiating hot spot plasma. The spectra were collected using a flat crystal spectrometer from aluminum and molybdenum in a 2×25 µm wire x-pinch configuration. We present results that show aluminum reaching the hydrogen-like state and molybdenum reaching the neon-like charge state, from which relevant plasma parameters are determined. We also present the results of a load optimization study for an x-pinch driven by a 350-kA microsecond generator. A scan of the configuration space across material, thickness, and number of wires was performed to determine which parameter combination creates the best total x-ray yield for use in radiography and backlighting. The configuration assessment was conducted using x-ray imaging, Si photodiodes, and diamond radiation detectors.","PeriodicalId":103240,"journal":{"name":"2019 IEEE Pulsed Power & Plasma Science (PPPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pulsed Power & Plasma Science (PPPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPPS34859.2019.9009714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Emission spectra from a microsecond x-pinch were studied in the soft x-ray region which give information about the radiating hot spot plasma. The spectra were collected using a flat crystal spectrometer from aluminum and molybdenum in a 2×25 µm wire x-pinch configuration. We present results that show aluminum reaching the hydrogen-like state and molybdenum reaching the neon-like charge state, from which relevant plasma parameters are determined. We also present the results of a load optimization study for an x-pinch driven by a 350-kA microsecond generator. A scan of the configuration space across material, thickness, and number of wires was performed to determine which parameter combination creates the best total x-ray yield for use in radiography and backlighting. The configuration assessment was conducted using x-ray imaging, Si photodiodes, and diamond radiation detectors.