Efficient region of interest detection using blind image division

Abass A. Olaode, G. Naghdy, Catherine A. Todd
{"title":"Efficient region of interest detection using blind image division","authors":"Abass A. Olaode, G. Naghdy, Catherine A. Todd","doi":"10.1109/SPS.2015.7168286","DOIUrl":null,"url":null,"abstract":"The determination of Region-of-Interest can be used as a means of improving the performance of image retrieval, when used in image annotation as a step in the indexing of images collection. It also has the potential to support efficient video compression for real-time applications. However, existing Region-of-Interest detection methods are mostly unsuitable for managing large number of images and for real-time video applications due to their high computational requirements. This paper therefore proposes an unsupervised algorithm which applies blind image division in the determination of relevant regions within an image space.","PeriodicalId":193902,"journal":{"name":"2015 Signal Processing Symposium (SPSympo)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing Symposium (SPSympo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPS.2015.7168286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The determination of Region-of-Interest can be used as a means of improving the performance of image retrieval, when used in image annotation as a step in the indexing of images collection. It also has the potential to support efficient video compression for real-time applications. However, existing Region-of-Interest detection methods are mostly unsuitable for managing large number of images and for real-time video applications due to their high computational requirements. This paper therefore proposes an unsupervised algorithm which applies blind image division in the determination of relevant regions within an image space.
基于盲图像分割的高效兴趣区域检测
感兴趣区域的确定可以作为提高图像检索性能的一种手段,用于图像标注作为图像集合索引的一个步骤。它还具有支持实时应用程序的高效视频压缩的潜力。然而,现有的兴趣区域检测方法由于计算量大,大多不适合管理大量图像和实时视频应用。因此,本文提出了一种无监督算法,该算法采用图像盲分割来确定图像空间内的相关区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信