RayTrack

Wen-Hsuan Shen, Hsin-Mu Tsai
{"title":"RayTrack","authors":"Wen-Hsuan Shen, Hsin-Mu Tsai","doi":"10.1145/3458864.3466867","DOIUrl":null,"url":null,"abstract":"Connected autonomous vehicles have boosted a high demand on communication throughput in order to timely share the information collected by in-car sensors (e.g., LiDAR). While visible light communication (VLC) has shown its capability to offer Gigabit-level throughput for applications with high demand for data rate, most are performed indoors and the throughput of outdoor VLC drops to a few Mbps. To fill this performance gap, this paper presents RayTrack, an interference-free outdoor mobile VLC system. The key idea of RayTrack is to use a small but real-time adjustable FOV according to the transmitter location, which can effectively repel interference from the environment and from other transmitters and boost the system throughput. The idea also realizes virtual point-to-point links, and eliminates the need of link access control. To be able to minimize the transmitter detection time to only 20 ms, RayTrack leverages a high-compression-ratio compressive sensing scheme, incorporating a dual-photodiode architecture, optimized measurement matrix and Gaussian-based basis to increase sparsity. Real-world driving experiments show that RayTrack is able to achieve a data rate of 607.9 kbps with over 90% detection accuracy and lower than 15% bit error rate at 35 m, with 70 - 100 km/hr driving speed. To the best of our knowledge, this is the first working outdoor VLC system which can offer such range, throughput and error performance while accommodating freeway mobility.","PeriodicalId":153361,"journal":{"name":"Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458864.3466867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Connected autonomous vehicles have boosted a high demand on communication throughput in order to timely share the information collected by in-car sensors (e.g., LiDAR). While visible light communication (VLC) has shown its capability to offer Gigabit-level throughput for applications with high demand for data rate, most are performed indoors and the throughput of outdoor VLC drops to a few Mbps. To fill this performance gap, this paper presents RayTrack, an interference-free outdoor mobile VLC system. The key idea of RayTrack is to use a small but real-time adjustable FOV according to the transmitter location, which can effectively repel interference from the environment and from other transmitters and boost the system throughput. The idea also realizes virtual point-to-point links, and eliminates the need of link access control. To be able to minimize the transmitter detection time to only 20 ms, RayTrack leverages a high-compression-ratio compressive sensing scheme, incorporating a dual-photodiode architecture, optimized measurement matrix and Gaussian-based basis to increase sparsity. Real-world driving experiments show that RayTrack is able to achieve a data rate of 607.9 kbps with over 90% detection accuracy and lower than 15% bit error rate at 35 m, with 70 - 100 km/hr driving speed. To the best of our knowledge, this is the first working outdoor VLC system which can offer such range, throughput and error performance while accommodating freeway mobility.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信