Roofline Analysis and Performance Optimization of the MGB Hydrological Model

H. Freitas, C. Mendes
{"title":"Roofline Analysis and Performance Optimization of the MGB Hydrological Model","authors":"H. Freitas, C. Mendes","doi":"10.5753/wscad.2019.8657","DOIUrl":null,"url":null,"abstract":"The Roofline model gives insights about the performance behavior of applications bounded by either memory or processor limits, providing useful guidelines for performance improvements. This work uses the Roofline model on the analysis of the MGB model that simulates hydrological processes in largescale watersheds. Real-world input data are used to characterize the performance on two multicore architectures, one with only CPUs and one with CPUs/GPU. The MGB model performance is improved with optimizations for better memory use, and also with shared-memory (OpenMP) and GPU (OpenACC) parallelism. CPU performance achieves 42.51 % and 50.17 % of each system’s peak, whereas GPU performance is low due to overheads caused by the MGB model structure.","PeriodicalId":117711,"journal":{"name":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad.2019.8657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Roofline model gives insights about the performance behavior of applications bounded by either memory or processor limits, providing useful guidelines for performance improvements. This work uses the Roofline model on the analysis of the MGB model that simulates hydrological processes in largescale watersheds. Real-world input data are used to characterize the performance on two multicore architectures, one with only CPUs and one with CPUs/GPU. The MGB model performance is improved with optimizations for better memory use, and also with shared-memory (OpenMP) and GPU (OpenACC) parallelism. CPU performance achieves 42.51 % and 50.17 % of each system’s peak, whereas GPU performance is low due to overheads caused by the MGB model structure.
MGB水文模型的顶线分析与性能优化
rooline模型提供了关于受内存或处理器限制的应用程序的性能行为的见解,为性能改进提供了有用的指导。本研究使用rooline模型对模拟大尺度流域水文过程的MGB模型进行分析。实际输入数据用于描述两个多核架构上的性能,一个只有cpu,一个有cpu /GPU。MGB模型的性能通过更好的内存使用优化,以及共享内存(OpenMP)和GPU (OpenACC)并行性得到改善。CPU性能达到每个系统峰值的42.51%和50.17%,而GPU性能由于MGB模型结构引起的开销而较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信