Tree-Based Approach to Missing Data Imputation

P. Vateekul, Kanoksri Sarinnapakorn
{"title":"Tree-Based Approach to Missing Data Imputation","authors":"P. Vateekul, Kanoksri Sarinnapakorn","doi":"10.1109/ICDMW.2009.92","DOIUrl":null,"url":null,"abstract":"Missing data is a well-recognized issue in data mining, and imputation is one way to handle the problem. In this paper, we propose a novel tree-based imputation algorithm called “Imputation Tree” (ITree). It first studies the predictability of missingness using all observations by constructing a binary classification tree called “Missing Pattern Tree” (MPT). Then, missing values in each cluster or terminal node are estimated by a regression tree of observations at that node. We present empirical results using both synthetic and real data. Almost all experiments demonstrate that ITree is superior to other commonly used methods in estimating missing values. The algorithm not only produces an impressive accuracy, but also provides information on the nature of missingness.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Missing data is a well-recognized issue in data mining, and imputation is one way to handle the problem. In this paper, we propose a novel tree-based imputation algorithm called “Imputation Tree” (ITree). It first studies the predictability of missingness using all observations by constructing a binary classification tree called “Missing Pattern Tree” (MPT). Then, missing values in each cluster or terminal node are estimated by a regression tree of observations at that node. We present empirical results using both synthetic and real data. Almost all experiments demonstrate that ITree is superior to other commonly used methods in estimating missing values. The algorithm not only produces an impressive accuracy, but also provides information on the nature of missingness.
基于树的缺失数据输入方法
数据缺失是数据挖掘中一个普遍存在的问题,而代入是解决这一问题的一种方法。在本文中,我们提出了一种新的基于树的imputation算法,称为“imputation Tree”(ITree)。它首先通过构建一个被称为“缺失模式树”(MPT)的二分类树来研究缺失的可预测性。然后,通过每个节点的观测值的回归树估计每个簇或终端节点的缺失值。我们使用合成数据和真实数据提出了实证结果。几乎所有的实验都表明,ITree在估计缺失值方面优于其他常用的方法。该算法不仅产生了令人印象深刻的准确性,而且还提供了关于失踪性质的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信