Spectral Super-resolution for RGB Images using Class-based BP Neural Networks

Xiaolin Han, Jing Yu, Jing-Hao Xue, Weidong Sun
{"title":"Spectral Super-resolution for RGB Images using Class-based BP Neural Networks","authors":"Xiaolin Han, Jing Yu, Jing-Hao Xue, Weidong Sun","doi":"10.1109/DICTA.2018.8615862","DOIUrl":null,"url":null,"abstract":"Hyperspectral images are of high spectral resolution and have been widely used in many applications, but the imaging process to achieve high spectral resolution is at the expense of spatial resolution. This paper aims to construct a high-spatial-resolution hyperspectral (HHS) image from a high-spatial-resolution RGB image, by proposing a novel class-based spectral super-resolution method. With the help of a set of RGB and HHS image-pairs, our proposed method learns nonlinear spectral mappings between RGB and HHS image-pairs using class-based back propagation neural networks (BPNNs). In the training stage, unsupervised clustering is used to divide an RGB image into several classes according to spectral correlation, and the spectrum-pairs from the classified RGB images and the corresponding HHS images are used to train the BPNNs, to establish the nonlinear spectral mapping for each class. In the spectral super-resolution stage, a supervised classification is used to classify the given RGB image into the classes determined during the training stage, and the final HHS image is reconstructed from the classified given RGB image using the trained BPNNs. Comparisons on three standard datasets, ICVL, CAVE and NUS, demonstrate that, our proposed method achieves a better spectral super-resolution quality than related state-of-the-art methods.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Hyperspectral images are of high spectral resolution and have been widely used in many applications, but the imaging process to achieve high spectral resolution is at the expense of spatial resolution. This paper aims to construct a high-spatial-resolution hyperspectral (HHS) image from a high-spatial-resolution RGB image, by proposing a novel class-based spectral super-resolution method. With the help of a set of RGB and HHS image-pairs, our proposed method learns nonlinear spectral mappings between RGB and HHS image-pairs using class-based back propagation neural networks (BPNNs). In the training stage, unsupervised clustering is used to divide an RGB image into several classes according to spectral correlation, and the spectrum-pairs from the classified RGB images and the corresponding HHS images are used to train the BPNNs, to establish the nonlinear spectral mapping for each class. In the spectral super-resolution stage, a supervised classification is used to classify the given RGB image into the classes determined during the training stage, and the final HHS image is reconstructed from the classified given RGB image using the trained BPNNs. Comparisons on three standard datasets, ICVL, CAVE and NUS, demonstrate that, our proposed method achieves a better spectral super-resolution quality than related state-of-the-art methods.
基于类的BP神经网络的光谱超分辨率RGB图像
高光谱图像具有很高的光谱分辨率,在许多应用中得到了广泛的应用,但实现高光谱分辨率的成像过程是以牺牲空间分辨率为代价的。本文提出了一种基于类的光谱超分辨率方法,旨在将高空间分辨率RGB图像构建为高空间分辨率高光谱(HHS)图像。该方法利用一组RGB和HHS图像对,利用基于类的反向传播神经网络(bpnn)学习RGB和HHS图像对之间的非线性光谱映射。在训练阶段,采用无监督聚类方法根据光谱相关性将RGB图像划分为若干类,并利用分类后的RGB图像与相应HHS图像的光谱对对bpnn进行训练,建立各类的非线性光谱映射。在光谱超分辨率阶段,使用监督分类将给定的RGB图像分类到训练阶段确定的类别中,并使用训练好的bpnn从分类后的给定RGB图像重建最终的HHS图像。在ICVL、CAVE和NUS三个标准数据集上的比较表明,我们的方法比现有的相关方法获得了更好的光谱超分辨率质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信