Identifying Prostate Cancer-Related Networks from Microarray Data Based on Genotype-Phenotype Networks Using Markov Blanket Search

Hsiang-Yuan Yeh, Yi-Yu Liu, Cheng-Yu Yeh, V. Soo
{"title":"Identifying Prostate Cancer-Related Networks from Microarray Data Based on Genotype-Phenotype Networks Using Markov Blanket Search","authors":"Hsiang-Yuan Yeh, Yi-Yu Liu, Cheng-Yu Yeh, V. Soo","doi":"10.1109/BIBE.2010.64","DOIUrl":null,"url":null,"abstract":"The identification of significant disease-related genes and networks is an important issue in understanding underlying mechanisms of cells. We integrate phenotype networks, protein networks and efficiently utilize gene expression data to identify human disease networks. We use prostate cancer data as our test domain. In comparison with statistical methods such as t-test and Wilcoxon test, our method identifies more prostate cancer-related genes reported in published database and literature. Interleukin-type growth factors, Ras related oncogenes and cytokine interactions canonical pathways are found to be significantly related to prostate cancer.","PeriodicalId":330904,"journal":{"name":"2010 IEEE International Conference on BioInformatics and BioEngineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on BioInformatics and BioEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2010.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The identification of significant disease-related genes and networks is an important issue in understanding underlying mechanisms of cells. We integrate phenotype networks, protein networks and efficiently utilize gene expression data to identify human disease networks. We use prostate cancer data as our test domain. In comparison with statistical methods such as t-test and Wilcoxon test, our method identifies more prostate cancer-related genes reported in published database and literature. Interleukin-type growth factors, Ras related oncogenes and cytokine interactions canonical pathways are found to be significantly related to prostate cancer.
基于基因型-表型网络的马尔可夫毯子搜索从微阵列数据中识别前列腺癌相关网络
识别重要的疾病相关基因和网络是理解细胞潜在机制的一个重要问题。我们整合表型网络,蛋白质网络,并有效地利用基因表达数据来识别人类疾病网络。我们使用前列腺癌数据作为我们的测试域。与t检验和Wilcoxon检验等统计方法相比,我们的方法识别了更多已发表数据库和文献中报道的前列腺癌相关基因。发现白细胞介素型生长因子、Ras相关癌基因和细胞因子相互作用的典型途径与前列腺癌有显著相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信