Identification of Similarities and Clusters of Bread Baking Recipes Based on Data of Ingredients

Stefan Anlau, Melanie Lasslberger, Rudolf Grassmann, Johannes Himmelbauer, Stephan Winkler
{"title":"Identification of Similarities and Clusters of Bread Baking Recipes Based on Data of Ingredients","authors":"Stefan Anlau, Melanie Lasslberger, Rudolf Grassmann, Johannes Himmelbauer, Stephan Winkler","doi":"10.46354/i3m.2022.foodops.002","DOIUrl":null,"url":null,"abstract":"We define the similarity of bakery recipes and identify groups of similar recipes using different clustering algorithms. Our analyses are based on the relative amounts of ingredients included in the recipes. We use different clustering algorithms to find the optimal clusters for all recipes, namely k-means, k-medoid, and hierarchical clustering. In addition to standard similarity measures we define a similarity measure using the logarithm of the original data to reduce the impact of raw materials that are used in large quantities. Clustering recipes based on their ingredients can improve the search for similar recipes and therefore help with the time-consuming process of developing new recipes. Using the k-medoid method, we can separate 1271 recipes into six different clusters. We visualize our results via dendrograms that represent the hierarchical separation of the recipes into individual groups and sub-groups.","PeriodicalId":184441,"journal":{"name":"Proceedings of the 8th International Food Operations and Processing Simulation Workshop (FoodOPS 2022)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Food Operations and Processing Simulation Workshop (FoodOPS 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46354/i3m.2022.foodops.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We define the similarity of bakery recipes and identify groups of similar recipes using different clustering algorithms. Our analyses are based on the relative amounts of ingredients included in the recipes. We use different clustering algorithms to find the optimal clusters for all recipes, namely k-means, k-medoid, and hierarchical clustering. In addition to standard similarity measures we define a similarity measure using the logarithm of the original data to reduce the impact of raw materials that are used in large quantities. Clustering recipes based on their ingredients can improve the search for similar recipes and therefore help with the time-consuming process of developing new recipes. Using the k-medoid method, we can separate 1271 recipes into six different clusters. We visualize our results via dendrograms that represent the hierarchical separation of the recipes into individual groups and sub-groups.
基于配料数据的面包烘焙配方相似性与聚类识别
我们定义了烘焙食谱的相似性,并使用不同的聚类算法识别相似食谱的组。我们的分析是基于配方中所含成分的相对数量。我们使用不同的聚类算法来找到所有食谱的最优聚类,即k-means, k-medoid和分层聚类。除了标准的相似度度量之外,我们使用原始数据的对数定义了相似度度量,以减少大量使用的原材料的影响。基于配料对食谱进行聚类可以改进对相似食谱的搜索,从而有助于减少开发新食谱的耗时过程。使用k-medoid方法,我们可以将1271个食谱分成6个不同的簇。我们通过树形图来可视化我们的结果,树形图表示食谱在单个组和子组中的分层分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信