Quantization For Distributed Estimation in Large Scale Sensor Networks

P. Venkitasubramaniam, G. Mergen, L. Tong, A. Swami
{"title":"Quantization For Distributed Estimation in Large Scale Sensor Networks","authors":"P. Venkitasubramaniam, G. Mergen, L. Tong, A. Swami","doi":"10.1109/ICISIP.2005.1619423","DOIUrl":null,"url":null,"abstract":"We study the problem of quantization for distributed parameter estimation in large scale sensor networks. Assuming a maximum likelihood estimator at the fusion center, we show that the Fisher information is maximized by a score-function quantizer. This provides a tight bound on best possible MSE for any unbiased estimator. Furthermore, we show that for a general convex metric, the optimal quantizer belongs to the class of score function quantizers. We also discuss a few practical applications of our results in optimizing estimation performance in distributed and temporal estimation problems","PeriodicalId":261916,"journal":{"name":"2005 3rd International Conference on Intelligent Sensing and Information Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 3rd International Conference on Intelligent Sensing and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIP.2005.1619423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

We study the problem of quantization for distributed parameter estimation in large scale sensor networks. Assuming a maximum likelihood estimator at the fusion center, we show that the Fisher information is maximized by a score-function quantizer. This provides a tight bound on best possible MSE for any unbiased estimator. Furthermore, we show that for a general convex metric, the optimal quantizer belongs to the class of score function quantizers. We also discuss a few practical applications of our results in optimizing estimation performance in distributed and temporal estimation problems
大规模传感器网络中分布式估计的量化
研究了大规模传感器网络中分布式参数估计的量化问题。假设融合中心有一个极大似然估计器,我们证明了分数函数量化器最大化了Fisher信息。这为任何无偏估计量提供了最佳可能MSE的紧界。进一步,我们证明了对于一般凸度量,最优量化器属于分数函数量化器类。我们还讨论了我们的结果在优化分布和时间估计问题中的估计性能方面的一些实际应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信