Protein subcelluar localisation prediction with improved performance

Jing Hu, Changhui Yan
{"title":"Protein subcelluar localisation prediction with improved performance","authors":"Jing Hu, Changhui Yan","doi":"10.1504/IJFIPM.2008.021395","DOIUrl":null,"url":null,"abstract":"Predicting the subcellular localisation of proteins is crucial for the determination of protein functions. In this paper, we present a computational method for protein localisation prediction. We start with a simple approach that predicts protein localisation based on Euclidian distance computed from residue composition. Then the performance is gradually improved by introducing a weighted Euclidian distance, including homologous information, and using feature selection. The final method achieves 90.3% accuracy in assigning proteins into five subcellular locations. Comparisons with CELLO, PSORT-B and P-CLASSIFIER show that our method outperforms the others.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2008.021395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Predicting the subcellular localisation of proteins is crucial for the determination of protein functions. In this paper, we present a computational method for protein localisation prediction. We start with a simple approach that predicts protein localisation based on Euclidian distance computed from residue composition. Then the performance is gradually improved by introducing a weighted Euclidian distance, including homologous information, and using feature selection. The final method achieves 90.3% accuracy in assigning proteins into five subcellular locations. Comparisons with CELLO, PSORT-B and P-CLASSIFIER show that our method outperforms the others.
改进性能的蛋白质亚细胞定位预测
预测蛋白质的亚细胞定位对于确定蛋白质功能至关重要。本文提出了一种蛋白质定位预测的计算方法。我们从一个简单的方法开始,该方法基于残基组成计算的欧几里得距离来预测蛋白质的定位。然后通过引入包含同源信息的加权欧氏距离和特征选择来逐步提高性能。最终的方法在将蛋白质分配到五个亚细胞位置上的准确率达到90.3%。与CELLO, PSORT-B和P-CLASSIFIER的比较表明,我们的方法优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信