Hyper-spectral image processing applications on the SIMD Pixel Processor for the digital battlefield

S. Chai, Antonio Gentile, W. Lugo-Beauchamp, J. Cruz-Rivera, D. S. Wills
{"title":"Hyper-spectral image processing applications on the SIMD Pixel Processor for the digital battlefield","authors":"S. Chai, Antonio Gentile, W. Lugo-Beauchamp, J. Cruz-Rivera, D. S. Wills","doi":"10.1109/CVBVS.1999.781102","DOIUrl":null,"url":null,"abstract":"Future military scenarios will rely on advanced imaging sensor technology beyond the visible spectrum to gain total battlefield awareness. Real-time processing of these data streams requires tremendous computational workloads and I/O throughputs. This paper presents three applications for hyper-spectral data streams, vector quantization, region autofocus, and K-means clustering, on the SIMD Pixel Processor (SIMPil). In SIMPil, an image sensor array (focal plane) is integrated on top of a SIMD computing layer to provide direct coupling between sensors and processors, alleviating I/O bandwidth bottlenecks while maintaining low power consumption and portability. Simulation results with sustained operation throughputs of 500-1500 Gops/sec support real-time performance and promote focal plane processing on SIMPil.","PeriodicalId":394469,"journal":{"name":"Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS'99)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS'99)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVBVS.1999.781102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Future military scenarios will rely on advanced imaging sensor technology beyond the visible spectrum to gain total battlefield awareness. Real-time processing of these data streams requires tremendous computational workloads and I/O throughputs. This paper presents three applications for hyper-spectral data streams, vector quantization, region autofocus, and K-means clustering, on the SIMD Pixel Processor (SIMPil). In SIMPil, an image sensor array (focal plane) is integrated on top of a SIMD computing layer to provide direct coupling between sensors and processors, alleviating I/O bandwidth bottlenecks while maintaining low power consumption and portability. Simulation results with sustained operation throughputs of 500-1500 Gops/sec support real-time performance and promote focal plane processing on SIMPil.
基于SIMD像素处理器的超光谱图像处理应用于数字战场
未来的军事场景将依赖于超越可见光谱的先进成像传感器技术来获得全面的战场感知。这些数据流的实时处理需要巨大的计算工作负载和I/O吞吐量。本文介绍了在SIMD像素处理器(SIMPil)上对高光谱数据流进行矢量量化、区域自动对焦和k均值聚类的三种应用。在SIMPil中,图像传感器阵列(焦平面)集成在SIMD计算层之上,提供传感器和处理器之间的直接耦合,缓解I/O带宽瓶颈,同时保持低功耗和可移植性。仿真结果表明,SIMPil的持续运行吞吐量为500-1500 Gops/sec,支持实时性能,并促进焦平面处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信