Dynamic neural control for maximum power point tracking of PV system

A. Dounis, P. Kofinas, C. Alafodimos, D. Tseles
{"title":"Dynamic neural control for maximum power point tracking of PV system","authors":"A. Dounis, P. Kofinas, C. Alafodimos, D. Tseles","doi":"10.1109/NEUREL.2012.6420029","DOIUrl":null,"url":null,"abstract":"Development of an effective maximum power point tracking (MPPT) algorithm is important in order to achieve maximum power point in a photovoltaic system (PV). In this study, a dynamic neural control (DNC) scheme is developed. The adaptation procedure is based on the back propagation learning law and is required only a priori knowledge, that's, the system output error. The feasibility of the proposed neural control is evaluated by the simulation results and compared to the conventional perturbation and observation (P&O) method.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6420029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Development of an effective maximum power point tracking (MPPT) algorithm is important in order to achieve maximum power point in a photovoltaic system (PV). In this study, a dynamic neural control (DNC) scheme is developed. The adaptation procedure is based on the back propagation learning law and is required only a priori knowledge, that's, the system output error. The feasibility of the proposed neural control is evaluated by the simulation results and compared to the conventional perturbation and observation (P&O) method.
光伏系统最大功率点跟踪的动态神经控制
为了实现光伏系统的最大功率点,开发一种有效的最大功率点跟踪算法是十分重要的。本文提出了一种动态神经控制(DNC)方案。自适应过程基于反向传播学习规律,只需要一个先验知识,即系统输出误差。仿真结果验证了所提神经控制方法的可行性,并与传统的扰动观测方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信