{"title":"Optimization of Material Composition to Minimize Thermal Stresses in Nonhomogeneous Plate Subjected to Unsteady Heat Supply","authors":"Y. Tanigawa, M. Matsumoto, T. Akai","doi":"10.1299/JSMEA1993.40.1_84","DOIUrl":null,"url":null,"abstract":"For a nonhomogeneous medium, both the heat conduction equation and the governing equations of an associated thermoelastic field are nonlinear in general. Therefore, theoretical treatment of these nonlinear equations is very difficult and an exact solution is almost impossible to obtain. By introducing a laminated composite model, we derived a one dimensional temperature solution for a nonhomogeneous plate in a transient state in our previous work. In the present work, making use of this temperature solution, we describe the optimization of material composition to minimize the transient thermal stress. As a numerical example, two nonhomogeneous plates, one composed of zirconium oxide/titanium alloy and the others of alumina/ aluminum alloy, are considered. Then the optimum material composition is determined by calculation. Furthermore, the temperaturedependence of material properties is discussed.","PeriodicalId":143127,"journal":{"name":"JSME international journal. Series A, mechanics and material engineering","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSME international journal. Series A, mechanics and material engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA1993.40.1_84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54
Abstract
For a nonhomogeneous medium, both the heat conduction equation and the governing equations of an associated thermoelastic field are nonlinear in general. Therefore, theoretical treatment of these nonlinear equations is very difficult and an exact solution is almost impossible to obtain. By introducing a laminated composite model, we derived a one dimensional temperature solution for a nonhomogeneous plate in a transient state in our previous work. In the present work, making use of this temperature solution, we describe the optimization of material composition to minimize the transient thermal stress. As a numerical example, two nonhomogeneous plates, one composed of zirconium oxide/titanium alloy and the others of alumina/ aluminum alloy, are considered. Then the optimum material composition is determined by calculation. Furthermore, the temperaturedependence of material properties is discussed.