Umit Aslan, N. LaGrassa, Michael S. Horn, U. Wilensky
{"title":"Phenomenological programming: a novel approach to designing domain specific programming environments for science learning","authors":"Umit Aslan, N. LaGrassa, Michael S. Horn, U. Wilensky","doi":"10.1145/3392063.3394428","DOIUrl":null,"url":null,"abstract":"There has been a growing interest in the use of computer-based models of scientific phenomena as part of classroom curricula, especially models that learners create for themselves. However, while studies show that constructing computational models of phenomena can serve as a powerful foundation for learning science, this approach has struggled to gain widespread adoption in classrooms because it not only requires teachers to learn sophisticated technological tools (such as computer programming), but it also requires precious instructional time to introduce these tools to students. Moreover, many core scientific topics such as the kinetic molecular theory, natural selection, and electricity are difficult to model even with novice-friendly environments. To address these limitations, we present a novel design approach called phenomenological programming that builds on students' intuitive understanding of real-world objects, patterns, and events to support the construction of agent-based computational models. We present preliminary case studies and discuss their implications for STEM content learning and the learnability and expressive power of phenomenological programming.","PeriodicalId":316877,"journal":{"name":"Proceedings of the Interaction Design and Children Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Interaction Design and Children Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3392063.3394428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
There has been a growing interest in the use of computer-based models of scientific phenomena as part of classroom curricula, especially models that learners create for themselves. However, while studies show that constructing computational models of phenomena can serve as a powerful foundation for learning science, this approach has struggled to gain widespread adoption in classrooms because it not only requires teachers to learn sophisticated technological tools (such as computer programming), but it also requires precious instructional time to introduce these tools to students. Moreover, many core scientific topics such as the kinetic molecular theory, natural selection, and electricity are difficult to model even with novice-friendly environments. To address these limitations, we present a novel design approach called phenomenological programming that builds on students' intuitive understanding of real-world objects, patterns, and events to support the construction of agent-based computational models. We present preliminary case studies and discuss their implications for STEM content learning and the learnability and expressive power of phenomenological programming.