A genetic algorithm feature selection based approach for Arabic Sentiment Classification

A. A. Aliane, H. Aliane, M. Ziane, Nacéra Bensaou
{"title":"A genetic algorithm feature selection based approach for Arabic Sentiment Classification","authors":"A. A. Aliane, H. Aliane, M. Ziane, Nacéra Bensaou","doi":"10.1109/AICCSA.2016.7945661","DOIUrl":null,"url":null,"abstract":"With the recently increasing interest for opinion mining from different research communities, there is an evolving body of work on Arabic Sentiment Analysis. There are few available polarity annotated datasets for this language, so most existing works use these datasets to test the best known supervised algorithms for their objectives. Naïve Bayes and SVM are the best reported algorithms in the Arabic sentiment analysis literature. The work described in this paper shows that using a genetic algorithm to select features and enhancing the quality of the training dataset improve significantly the accuracy of the learning algorithm. We use the LABR dataset of book reviews and compare our results with LABR's authors' results.","PeriodicalId":448329,"journal":{"name":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2016.7945661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

With the recently increasing interest for opinion mining from different research communities, there is an evolving body of work on Arabic Sentiment Analysis. There are few available polarity annotated datasets for this language, so most existing works use these datasets to test the best known supervised algorithms for their objectives. Naïve Bayes and SVM are the best reported algorithms in the Arabic sentiment analysis literature. The work described in this paper shows that using a genetic algorithm to select features and enhancing the quality of the training dataset improve significantly the accuracy of the learning algorithm. We use the LABR dataset of book reviews and compare our results with LABR's authors' results.
基于遗传算法特征选择的阿拉伯语情感分类方法
随着最近不同研究团体对意见挖掘的兴趣日益增加,阿拉伯语情绪分析的工作也在不断发展。这种语言很少有可用的极性注释数据集,所以大多数现有的工作都使用这些数据集来测试最著名的监督算法。Naïve贝叶斯和支持向量机是阿拉伯语情感分析文献中报道得最好的算法。本文所描述的工作表明,使用遗传算法来选择特征并提高训练数据集的质量可以显着提高学习算法的准确性。我们使用LABR的书评数据集,并将我们的结果与LABR的作者的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信