Classification of PCB configurations from radiated EMI by using neural network

K. Aunchaleevarapan, K. Paithoonwatanakij, Y. Preampraneerach, W. Khan-ngern, S. Nitta
{"title":"Classification of PCB configurations from radiated EMI by using neural network","authors":"K. Aunchaleevarapan, K. Paithoonwatanakij, Y. Preampraneerach, W. Khan-ngern, S. Nitta","doi":"10.1109/CEEM.2000.853911","DOIUrl":null,"url":null,"abstract":"This paper presents a method of classifications of printed circuit board (PCB) with having several configuration by using neural network to recognized its spectrum. The learning process is accomplished by giving the neural network the different radiated emission spectra of 22 PCB configurations. The trained neural network is successfully able to predict the PCB configurations.","PeriodicalId":153945,"journal":{"name":"Proceedings. Asia-Pacific Conference on Environmental Electromagnetics. CEEM'2000 (IEEE Cat. No.00EX402)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Asia-Pacific Conference on Environmental Electromagnetics. CEEM'2000 (IEEE Cat. No.00EX402)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEM.2000.853911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a method of classifications of printed circuit board (PCB) with having several configuration by using neural network to recognized its spectrum. The learning process is accomplished by giving the neural network the different radiated emission spectra of 22 PCB configurations. The trained neural network is successfully able to predict the PCB configurations.
利用神经网络对辐射电磁干扰下的PCB结构进行分类
本文提出了一种利用神经网络对具有多种结构的印刷电路板进行频谱识别的分类方法。学习过程是通过给神经网络22种PCB结构的不同辐射发射光谱来完成的。训练后的神经网络能够成功地预测PCB的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信