Clustering Trajectories via Sparse Auto-encoders

Xiaofeng Wu, Rui Zhang, Lin Li
{"title":"Clustering Trajectories via Sparse Auto-encoders","authors":"Xiaofeng Wu, Rui Zhang, Lin Li","doi":"10.1109/MIPR51284.2021.00049","DOIUrl":null,"url":null,"abstract":"With the development of satellite navigation, communication and positioning technology, more and more trajectory data are collected and stored. Exploring such trajectory data can help us understand human mobility. A typical task of group-level mobility modeling is trajectory clustering. However, trajectories usually vary in length and shape, also contain noises. These exert a negative influence on trajectory representation and thus hinder trajectory clustering. Therefore, this paper proposes a U-type robust sparse autoencoder model(uRSAA), which is robust against noise and form variety. Specifically, a sparsity penalty is applied to constrain the output to decrease the effect of noise. By introducing skip connections, our model can strengthen the data exchange and preserve the information. Experiments are conducted on both synthetic datasets and real datasets, and the results show that our model outperforms the existing models.","PeriodicalId":139543,"journal":{"name":"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR51284.2021.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of satellite navigation, communication and positioning technology, more and more trajectory data are collected and stored. Exploring such trajectory data can help us understand human mobility. A typical task of group-level mobility modeling is trajectory clustering. However, trajectories usually vary in length and shape, also contain noises. These exert a negative influence on trajectory representation and thus hinder trajectory clustering. Therefore, this paper proposes a U-type robust sparse autoencoder model(uRSAA), which is robust against noise and form variety. Specifically, a sparsity penalty is applied to constrain the output to decrease the effect of noise. By introducing skip connections, our model can strengthen the data exchange and preserve the information. Experiments are conducted on both synthetic datasets and real datasets, and the results show that our model outperforms the existing models.
基于稀疏自编码器的聚类轨迹
随着卫星导航、通信和定位技术的发展,越来越多的轨道数据被收集和存储。探索这些轨迹数据可以帮助我们理解人类的流动性。群体层级迁移建模的一个典型任务是轨迹聚类。然而,轨迹通常在长度和形状上变化,也包含噪声。这对轨迹表示产生了负面影响,从而阻碍了轨迹聚类。因此,本文提出了一种u型鲁棒稀疏自编码器模型(uRSAA),该模型对噪声和格式变化具有鲁棒性。具体来说,应用稀疏性惩罚来约束输出以减少噪声的影响。该模型通过引入跳接,加强了数据交换和信息保存。在合成数据集和真实数据集上进行了实验,结果表明我们的模型优于现有的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信