L. Cavanini, P. Majecki, M. Grimble, G. M. V. D. Molen
{"title":"Energy Management Control of Hydrogen Fuel Cell Powered Ships","authors":"L. Cavanini, P. Majecki, M. Grimble, G. M. V. D. Molen","doi":"10.23919/ACC55779.2023.10156221","DOIUrl":null,"url":null,"abstract":"An Energy Management System for electric vessels is described, based on a Model Predictive Control (MPC) with Anticipative Action. The electric ship has a power system composed of a hydrogen fuel cell generator, a battery storage system, a propulsion system, an auxiliary load module, and a command system. The controller defines the power allocated among the vessel’s power system components. The MPC design uses a Linear Parameter-Varying (LPV) model to approximate the nonlinear dynamics of the vessel’s power system and components. To improve the performance of the LPV-MPC, an additional predictor is included, based on data-driven Machine Learning. This is included in the LPV-MPC so the future predicted trajectory of the reference signals can be estimated to improve the allocation of power. The reference trajectory is generated using a Neural Network trained to estimate the future power demand determined by representative ship manoeuvres. A simple baseline Rule-based (RB) strategy was compared with the basic LPV-MPC and with the data-driven LPV-MPC that includes the prediction generated by the Neural Network.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10156221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An Energy Management System for electric vessels is described, based on a Model Predictive Control (MPC) with Anticipative Action. The electric ship has a power system composed of a hydrogen fuel cell generator, a battery storage system, a propulsion system, an auxiliary load module, and a command system. The controller defines the power allocated among the vessel’s power system components. The MPC design uses a Linear Parameter-Varying (LPV) model to approximate the nonlinear dynamics of the vessel’s power system and components. To improve the performance of the LPV-MPC, an additional predictor is included, based on data-driven Machine Learning. This is included in the LPV-MPC so the future predicted trajectory of the reference signals can be estimated to improve the allocation of power. The reference trajectory is generated using a Neural Network trained to estimate the future power demand determined by representative ship manoeuvres. A simple baseline Rule-based (RB) strategy was compared with the basic LPV-MPC and with the data-driven LPV-MPC that includes the prediction generated by the Neural Network.