Unsupervised representation learning of structured radio communication signals

Tim O'Shea, Johnathan Corgan, T. Clancy
{"title":"Unsupervised representation learning of structured radio communication signals","authors":"Tim O'Shea, Johnathan Corgan, T. Clancy","doi":"10.1109/SPLIM.2016.7528397","DOIUrl":null,"url":null,"abstract":"We explore unsupervised representation learning of radio communication signals in raw sampled time series representation. We demonstrate that we can learn modulation basis functions using convolutional autoencoders and visually recognize their relationship to the analytic bases used in digital communications. We also propose and evaluate quantitative metrics for quality of encoding using domain relevant performance metrics.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

Abstract

We explore unsupervised representation learning of radio communication signals in raw sampled time series representation. We demonstrate that we can learn modulation basis functions using convolutional autoencoders and visually recognize their relationship to the analytic bases used in digital communications. We also propose and evaluate quantitative metrics for quality of encoding using domain relevant performance metrics.
结构化无线电通信信号的无监督表示学习
我们在原始采样时间序列表示中探索无线电通信信号的无监督表示学习。我们证明了我们可以使用卷积自编码器学习调制基函数,并直观地识别它们与数字通信中使用的分析基的关系。我们还提出并评估了使用领域相关性能指标的编码质量定量指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信