Statistical Inference for Optimisation of Drug Delivery from Stents

L. Paun, André Fensterseifer Schmidt, S. McGinty, D. Husmeier
{"title":"Statistical Inference for Optimisation of Drug Delivery from Stents","authors":"L. Paun, André Fensterseifer Schmidt, S. McGinty, D. Husmeier","doi":"10.11159/icsta22.138","DOIUrl":null,"url":null,"abstract":"The current study employs state-of-the-art optimisation methods for estimation of unknown parameters in a mathematical model of highly non-linear partial differential equations describing drug delivery from a drug-eluding stent. A classical optimisation scheme entails enormous run times due to the need to numerically solve the computationally expensive equations a large number of times to obtain the objective (black-box) function. We address this issue by employing an efficient global optimisation scheme, i.e. Bayesian optimisation (BO). This scheme aims to find the optimum of the black-box function by using an emulator of the original objective function to select the next query point (while balancing exploration and exploitation), and sequentially refining the emulator. Additionally, the proposed optimisation scheme is adapted to scenarios where there are hidden constraints in parameter space by incorporating a classifier that learns the infeasible parameter domains. We demonstrate that given a fixed number of expensive mathematical model evaluations, the proposed BO scheme outperforms state-of-the-art classical optimisation methods in terms of accuracy. present study focuses on applying state-of-the-art optimisation methods, namely BO in a drug-eluting stent application.","PeriodicalId":325859,"journal":{"name":"Proceedings of the 4th International Conference on Statistics: Theory and Applications","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Statistics: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icsta22.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The current study employs state-of-the-art optimisation methods for estimation of unknown parameters in a mathematical model of highly non-linear partial differential equations describing drug delivery from a drug-eluding stent. A classical optimisation scheme entails enormous run times due to the need to numerically solve the computationally expensive equations a large number of times to obtain the objective (black-box) function. We address this issue by employing an efficient global optimisation scheme, i.e. Bayesian optimisation (BO). This scheme aims to find the optimum of the black-box function by using an emulator of the original objective function to select the next query point (while balancing exploration and exploitation), and sequentially refining the emulator. Additionally, the proposed optimisation scheme is adapted to scenarios where there are hidden constraints in parameter space by incorporating a classifier that learns the infeasible parameter domains. We demonstrate that given a fixed number of expensive mathematical model evaluations, the proposed BO scheme outperforms state-of-the-art classical optimisation methods in terms of accuracy. present study focuses on applying state-of-the-art optimisation methods, namely BO in a drug-eluting stent application.
优化支架给药的统计推断
目前的研究采用了最先进的优化方法来估计未知参数的高度非线性偏微分方程的数学模型,描述了药物逃避支架的药物输送。经典的优化方案需要大量的运行时间,因为需要大量的数值求解计算昂贵的方程来获得目标(黑盒)函数。我们通过采用一个有效的全局优化方案,即贝叶斯优化(BO)来解决这个问题。该方案旨在利用原始目标函数的仿真器来选择下一个查询点(同时平衡探索和利用),并对仿真器进行逐级细化,从而找到黑盒函数的最优解。此外,所提出的优化方案通过结合学习不可行参数域的分类器来适应参数空间中存在隐藏约束的场景。我们证明,给定固定数量的昂贵数学模型评估,所提出的BO方案在精度方面优于最先进的经典优化方法。目前的研究重点是应用最先进的优化方法,即BO在药物洗脱支架中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信