Arbitrage-Free Call Option Surface Construction Using Regression Splines (Preprint)

Greg Orosi
{"title":"Arbitrage-Free Call Option Surface Construction Using Regression Splines (Preprint)","authors":"Greg Orosi","doi":"10.2139/ssrn.1956138","DOIUrl":null,"url":null,"abstract":"In this work, we suggest a novel quadratic programming-based algorithm to generate an arbitrage-free call option surface. Our approach relies on a regression spline-based implementation of the framework proposed by Orosi (2011) who presents a multi-parameter extension of the models of Figlewski (2002) and Henderson, Hobson, and Kluge (2007). Moreover, the empirical performance of the proposed method is evaluated using S&P 500 Index call options. Our results indicate that the proposed method provides a more precise fit to observed option prices than other alternative methodologies. NOTE: This is a preprint. The published version has been extensively revised.","PeriodicalId":431629,"journal":{"name":"Econometrics: Applied Econometric Modeling in Financial Economics eJournal","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometric Modeling in Financial Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1956138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we suggest a novel quadratic programming-based algorithm to generate an arbitrage-free call option surface. Our approach relies on a regression spline-based implementation of the framework proposed by Orosi (2011) who presents a multi-parameter extension of the models of Figlewski (2002) and Henderson, Hobson, and Kluge (2007). Moreover, the empirical performance of the proposed method is evaluated using S&P 500 Index call options. Our results indicate that the proposed method provides a more precise fit to observed option prices than other alternative methodologies. NOTE: This is a preprint. The published version has been extensively revised.
利用回归样条曲线构建无套利看涨期权曲面(预印本)
在这项工作中,我们提出了一种新的基于二次规划的算法来生成无套利看涨期权曲面。我们的方法依赖于Orosi(2011)提出的基于回归样条的框架实现,该框架提出了Figlewski(2002)和Henderson, Hobson, and Kluge(2007)模型的多参数扩展。此外,采用标准普尔500指数看涨期权对该方法的实证绩效进行了评估。我们的结果表明,所提出的方法提供了一个更精确的拟合观察期权价格比其他替代方法。注:这是预印本。已出版的版本作了大量修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信