Evidence-based automated traffic hazard zone mapping using wearable sensors

Masahiro Tada, H. Noma, K. Renge
{"title":"Evidence-based automated traffic hazard zone mapping using wearable sensors","authors":"Masahiro Tada, H. Noma, K. Renge","doi":"10.1145/1891903.1891957","DOIUrl":null,"url":null,"abstract":"Recently, underestimating traffic condition risk is considered one of the biggest reasons for traffic accidents. In this paper, we proposed evidence-based automatic hazard zone mapping method using wearable sensors. Here, we measure driver's behavior using three-axis gyro sensors. Analyzing the measured motion data, proposed method can label characteristic motion that is observed at hazard zone. We gathered motion data sets form two types of driver, i.e., an instructor of driving school and an ordinary driver, then, tried to generate traffic hazard zone map focused on difference of the motions. Through the experiment in public road, we confirmed our method allows to extract hazard zone.","PeriodicalId":181145,"journal":{"name":"ICMI-MLMI '10","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICMI-MLMI '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1891903.1891957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recently, underestimating traffic condition risk is considered one of the biggest reasons for traffic accidents. In this paper, we proposed evidence-based automatic hazard zone mapping method using wearable sensors. Here, we measure driver's behavior using three-axis gyro sensors. Analyzing the measured motion data, proposed method can label characteristic motion that is observed at hazard zone. We gathered motion data sets form two types of driver, i.e., an instructor of driving school and an ordinary driver, then, tried to generate traffic hazard zone map focused on difference of the motions. Through the experiment in public road, we confirmed our method allows to extract hazard zone.
使用可穿戴传感器的基于证据的自动交通危险区域地图
近年来,低估交通状况风险被认为是造成交通事故的最大原因之一。本文提出了基于可穿戴传感器的基于证据的自动危险区测绘方法。在这里,我们使用三轴陀螺仪传感器测量驾驶员的行为。通过对实测运动数据的分析,该方法可以对危险区域观测到的特征运动进行标记。我们收集驾校教师和普通驾驶员两类驾驶员的运动数据集,然后尝试生成针对运动差异的交通危险区地图。通过在公共道路上的实验,我们证实了我们的方法可以提取危险区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信