{"title":"Penerapan Jaringan Saraf Tiruan Dalam Memprediksi Indikator Utama Ekonomi Dunia","authors":"Alan Boy Sandy Damanik, Agung Bimantoro","doi":"10.30645/j-sakti.v2i2.80","DOIUrl":null,"url":null,"abstract":"Economics is one of the most important aspects in the world. Economics greatly determines the progress and development of a country. However, there are still many countries with low economic levels. Therefore the aim of this study is to predict and determine the level of the main indicators of the world economy as one of the anticipatory steps to further increase the level of the country's economy. World Economic Indicator Data to be used is sourced from Bloomberg and Bank Indonesia. To find out further developments, it is necessary to research the existing data. The algorithm used is Backpropagatian Neural Network. Data analysis was carried out using artificial neural network method using Matlab R2011b software. The study uses 5 architectural models. The best network architecture produced is 3-43-1 with an accuracy rate of 86% and the Mean Squared Error (MSE) value is 1.336593.","PeriodicalId":402811,"journal":{"name":"J-SAKTI (Jurnal Sains Komputer dan Informatika)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J-SAKTI (Jurnal Sains Komputer dan Informatika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30645/j-sakti.v2i2.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Economics is one of the most important aspects in the world. Economics greatly determines the progress and development of a country. However, there are still many countries with low economic levels. Therefore the aim of this study is to predict and determine the level of the main indicators of the world economy as one of the anticipatory steps to further increase the level of the country's economy. World Economic Indicator Data to be used is sourced from Bloomberg and Bank Indonesia. To find out further developments, it is necessary to research the existing data. The algorithm used is Backpropagatian Neural Network. Data analysis was carried out using artificial neural network method using Matlab R2011b software. The study uses 5 architectural models. The best network architecture produced is 3-43-1 with an accuracy rate of 86% and the Mean Squared Error (MSE) value is 1.336593.