A user clustering algorithm on web usage mining

S. Hao, Zhaoxiang Shen, Bingbing Zhang
{"title":"A user clustering algorithm on web usage mining","authors":"S. Hao, Zhaoxiang Shen, Bingbing Zhang","doi":"10.1109/EIIS.2017.8298745","DOIUrl":null,"url":null,"abstract":"Data mining on web log files is called Web Usage Mining (WUM). User clustering based on access patterns is an important part of WUM. Most papers just consider web pages hits, but ignore the succession of pages during user clustering. Therefore, a new user similarity measurement method is put forward in this paper, which takes not only web page hits but also the succession of pages into account. And at the same time, a new clustering algorithm named DBSCAN&Chameleon based on DBSCAN and Chameleon is introduced in this paper. Finally, experiments show that the clustering quality of this algorithm is much higher than DBSCAN and Chameleon.","PeriodicalId":434246,"journal":{"name":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIIS.2017.8298745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Data mining on web log files is called Web Usage Mining (WUM). User clustering based on access patterns is an important part of WUM. Most papers just consider web pages hits, but ignore the succession of pages during user clustering. Therefore, a new user similarity measurement method is put forward in this paper, which takes not only web page hits but also the succession of pages into account. And at the same time, a new clustering algorithm named DBSCAN&Chameleon based on DBSCAN and Chameleon is introduced in this paper. Finally, experiments show that the clustering quality of this algorithm is much higher than DBSCAN and Chameleon.
一种基于web使用挖掘的用户聚类算法
对web日志文件的数据挖掘称为web Usage mining (WUM)。基于访问模式的用户聚类是WUM的重要组成部分。大多数论文只考虑网页的点击率,而忽略了用户聚类过程中页面的连续。因此,本文提出了一种新的用户相似度度量方法,该方法不仅考虑了网页的点击率,而且考虑了网页的连续度。同时,在DBSCAN算法和变色龙算法的基础上,提出了一种新的聚类算法——DBSCAN&Chameleon。实验结果表明,该算法的聚类质量远高于DBSCAN和Chameleon算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信