A single neuron PID controller for tension control based on RBF NN identification

Wang Yu, Qi Xiao-yao, Zhuang Jiang
{"title":"A single neuron PID controller for tension control based on RBF NN identification","authors":"Wang Yu, Qi Xiao-yao, Zhuang Jiang","doi":"10.1109/CSAE.2011.5952659","DOIUrl":null,"url":null,"abstract":"Tension control in FGS (flexible graphite sheet) forming process is crucial to ensure product quality. Because the traditional PID controller is ineffective to regulate the tension when the radius of the unwinding roll is getting smaller, a single neuron adaptive PID controller based on RBFNN (Radial Basis Function neural network) identification is proposed to improve the system performance. RBFNN identifies accurate Jacobian information first and then the single neuron controller adjusts PID parameters is for implementation. The simulation results show that, compared to traditional PID controller, the method possesses the advantages of high precision, quick response and great adaptability and robustness.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5952659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tension control in FGS (flexible graphite sheet) forming process is crucial to ensure product quality. Because the traditional PID controller is ineffective to regulate the tension when the radius of the unwinding roll is getting smaller, a single neuron adaptive PID controller based on RBFNN (Radial Basis Function neural network) identification is proposed to improve the system performance. RBFNN identifies accurate Jacobian information first and then the single neuron controller adjusts PID parameters is for implementation. The simulation results show that, compared to traditional PID controller, the method possesses the advantages of high precision, quick response and great adaptability and robustness.
基于RBF神经网络辨识的单神经元张力PID控制器
柔性石墨板成形过程中的张力控制是保证产品质量的关键。针对传统PID控制器在放卷辊半径变小时张力调节效果不佳的问题,提出了一种基于RBFNN (Radial Basis Function neural network)辨识的单神经元自适应PID控制器来提高系统性能。RBFNN首先识别准确的雅可比信息,然后单神经元控制器调整PID参数进行实现。仿真结果表明,与传统PID控制器相比,该方法具有精度高、响应速度快、适应性强、鲁棒性强等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信