Football Match Prediction using Exploratory Data Analysis & Multi-Output Regression

Ayush Majumdar, Ravneet Kaur, Tarak Kulkarni, Mufaddal Jiruwala, Sneh Shah, N. Pise
{"title":"Football Match Prediction using Exploratory Data Analysis & Multi-Output Regression","authors":"Ayush Majumdar, Ravneet Kaur, Tarak Kulkarni, Mufaddal Jiruwala, Sneh Shah, N. Pise","doi":"10.1109/IATMSI56455.2022.10119340","DOIUrl":null,"url":null,"abstract":"Football is one of the world's most popular and highly spectated games. The unpredictability of a football match is what makes this sport special and loved. Crowd influences, home team advantage, hostile away game atmosphere, the underdog wins, and comebacks make it such a hard game to predict. This paper represents a detailed study of predicting the outcome of a football match and thus, in turn, predicting the winners of the upcoming 2022 FIFA World Cup using Exploratory Data Analysis (EDA) to determine the important features of the dataset and then training various machine learning techniques to predict the score. The algorithms tested are Random Forests, Decision Trees, K-Nearest Neighbors, XGBoost, and Gradient Boosting. In the context of international football matches, the findings of this comparative analysis revealed that the XGBoost and Gradient Booster produced the highest average accuracy of 98.34 per cent.","PeriodicalId":221211,"journal":{"name":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IATMSI56455.2022.10119340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Football is one of the world's most popular and highly spectated games. The unpredictability of a football match is what makes this sport special and loved. Crowd influences, home team advantage, hostile away game atmosphere, the underdog wins, and comebacks make it such a hard game to predict. This paper represents a detailed study of predicting the outcome of a football match and thus, in turn, predicting the winners of the upcoming 2022 FIFA World Cup using Exploratory Data Analysis (EDA) to determine the important features of the dataset and then training various machine learning techniques to predict the score. The algorithms tested are Random Forests, Decision Trees, K-Nearest Neighbors, XGBoost, and Gradient Boosting. In the context of international football matches, the findings of this comparative analysis revealed that the XGBoost and Gradient Booster produced the highest average accuracy of 98.34 per cent.
利用探索性数据分析和多输出回归进行足球比赛预测
足球是世界上最受欢迎和最受欢迎的运动之一。足球比赛的不可预测性使这项运动变得特别和受人喜爱。观众的影响,主队的优势,敌对的客场比赛气氛,失败者的胜利,以及反击使得这场比赛很难预测。本文代表了对预测足球比赛结果的详细研究,因此,反过来,使用探索性数据分析(EDA)来预测即将到来的2022年FIFA世界杯的获胜者,以确定数据集的重要特征,然后训练各种机器学习技术来预测比分。测试的算法有随机森林、决策树、k近邻、XGBoost和梯度增强。在国际足球比赛的背景下,这项比较分析的结果显示,XGBoost和Gradient Booster的平均准确率最高,为98.34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信