On some global topological aspects of manifold learning

J. Manton, N. L. Bihan
{"title":"On some global topological aspects of manifold learning","authors":"J. Manton, N. L. Bihan","doi":"10.1109/ICIP.2017.8296276","DOIUrl":null,"url":null,"abstract":"With the dual purpose of helping place in perspective the diverse approaches to manifold learning, and facilitating future research, this paper steps back and describes the manifold learning problem from a holistic perspective. It is argued that getting the homology right can be crucial to successful classification schemes based on the intrinsic geometry of the learnt manifold, and furthermore, a purely Bayesian approach will not be able to succeed at this in general. Simple examples are given to illustrate the inherent limitations of manifold learning.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the dual purpose of helping place in perspective the diverse approaches to manifold learning, and facilitating future research, this paper steps back and describes the manifold learning problem from a holistic perspective. It is argued that getting the homology right can be crucial to successful classification schemes based on the intrinsic geometry of the learnt manifold, and furthermore, a purely Bayesian approach will not be able to succeed at this in general. Simple examples are given to illustrate the inherent limitations of manifold learning.
流形学习的一些全局拓扑问题
为了更好地了解流形学习的各种方法,并促进未来的研究,本文退后一步,从整体的角度描述了流形学习问题。有人认为,获得正确的同源性对于基于学习到的流形的内在几何结构的成功分类方案至关重要,而且,纯贝叶斯方法通常无法在这方面取得成功。给出了简单的例子来说明流形学习的固有局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信