A Machine Learning Approach for Energy-Efficient IoT Systems

Mahmoud M. Ismail
{"title":"A Machine Learning Approach for Energy-Efficient IoT Systems","authors":"Mahmoud M. Ismail","doi":"10.54216/jisiot.010105","DOIUrl":null,"url":null,"abstract":"The energy challenge in IoT refers to the significant energy consumption of IoT devices, which can lead to sustainability issues, shorter battery life, and increased operating costs. IoT devices are known for their high energy consumption, and optimizing their energy usage can have a significant impact on sustainability and cost. Machine learning (ML) can learn from data and patterns to predict and control energy consumption in IoT systems, making them more energy efficient. The main contribution of this paper is the establishment of a novel deep learning framework for enhanced predictive modeling of energy consumption in IoT networks to help realize Energy-efficient IoT systems. our framework applies recurrent processing to capture long-term relations in the energy consumption of IoT appliances. Then, the self-attention mechanism is devised to help the model to focus on important predictive features. Simulation experiments against the competing ML baselines demonstrate the predictive capability of our framework.","PeriodicalId":122556,"journal":{"name":"Journal of Intelligent Systems and Internet of Things","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jisiot.010105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The energy challenge in IoT refers to the significant energy consumption of IoT devices, which can lead to sustainability issues, shorter battery life, and increased operating costs. IoT devices are known for their high energy consumption, and optimizing their energy usage can have a significant impact on sustainability and cost. Machine learning (ML) can learn from data and patterns to predict and control energy consumption in IoT systems, making them more energy efficient. The main contribution of this paper is the establishment of a novel deep learning framework for enhanced predictive modeling of energy consumption in IoT networks to help realize Energy-efficient IoT systems. our framework applies recurrent processing to capture long-term relations in the energy consumption of IoT appliances. Then, the self-attention mechanism is devised to help the model to focus on important predictive features. Simulation experiments against the competing ML baselines demonstrate the predictive capability of our framework.
节能物联网系统的机器学习方法
物联网中的能源挑战是指物联网设备的大量能源消耗,这可能导致可持续性问题、电池寿命缩短和运营成本增加。物联网设备以其高能耗而闻名,优化其能源使用可以对可持续性和成本产生重大影响。机器学习(ML)可以从数据和模式中学习,以预测和控制物联网系统中的能耗,使其更加节能。本文的主要贡献是建立了一种新的深度学习框架,用于增强物联网网络中能源消耗的预测建模,以帮助实现节能的物联网系统。我们的框架应用循环处理来捕捉物联网设备能耗的长期关系。然后,设计了自注意机制,帮助模型关注重要的预测特征。针对竞争的ML基线的仿真实验证明了我们的框架的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信