Deep Learning AD Detection Model based on a Two-Layer Ensemble Module with Data Augmentation and Contrastive Learning

Weicheng Wang
{"title":"Deep Learning AD Detection Model based on a Two-Layer Ensemble Module with Data Augmentation and Contrastive Learning","authors":"Weicheng Wang","doi":"10.1145/3590003.3590061","DOIUrl":null,"url":null,"abstract":"Abstract—Alzheimer's Disease (AD) is a long-term disease that gradually decreases cognitive functioning, such as thinking, memory and behavior. In 2015, 29.8 million AD cases were recorded and 1.9 million AD-related deaths were reported worldwide. Early detection and intervention are critical for such a deadly and costly disease. I present to tackle the detection of AD and its severity using a deep-learning architecture that consists of a two-stage ensemble system with contrastive learning and data augmentation. I evaluated it on the ADReSS Challenge's dataset, which is subject-independent and balanced in terms of age and gender. When compared against a one-stage ensemble baseline approach, my two-stage ensemble system was able to achieve better results, with a F1-score of 95.7% in the AD classification task, and an RMSE score of 5.432. Moreover, I found that the data augmentation can effectively improve the robustness of the AD detection performance, particularly when there are sensor noises in the training and test data. Besides data augmentation, I also explored whether contrastive loss can further boost the robustness, and the results showed that contrastive learning might not be necessary when we have data augmentation.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract—Alzheimer's Disease (AD) is a long-term disease that gradually decreases cognitive functioning, such as thinking, memory and behavior. In 2015, 29.8 million AD cases were recorded and 1.9 million AD-related deaths were reported worldwide. Early detection and intervention are critical for such a deadly and costly disease. I present to tackle the detection of AD and its severity using a deep-learning architecture that consists of a two-stage ensemble system with contrastive learning and data augmentation. I evaluated it on the ADReSS Challenge's dataset, which is subject-independent and balanced in terms of age and gender. When compared against a one-stage ensemble baseline approach, my two-stage ensemble system was able to achieve better results, with a F1-score of 95.7% in the AD classification task, and an RMSE score of 5.432. Moreover, I found that the data augmentation can effectively improve the robustness of the AD detection performance, particularly when there are sensor noises in the training and test data. Besides data augmentation, I also explored whether contrastive loss can further boost the robustness, and the results showed that contrastive learning might not be necessary when we have data augmentation.
基于数据增强和对比学习的双层集成模块深度学习AD检测模型
摘要/ abstract摘要:阿尔茨海默病(AD)是一种长期的疾病,它会逐渐降低思维、记忆和行为等认知功能。2015年,全世界记录了2980万例AD病例,报告了190万例AD相关死亡。对于这种致命和昂贵的疾病,早期发现和干预至关重要。我提出使用深度学习架构来解决AD的检测及其严重性,该架构由具有对比学习和数据增强的两阶段集成系统组成。我在address Challenge的数据集上对它进行了评估,该数据集独立于主体,在年龄和性别方面保持平衡。与单阶段集成基线方法相比,我的两阶段集成系统能够获得更好的结果,在AD分类任务中f1得分为95.7%,RMSE得分为5.432。此外,我发现数据增强可以有效地提高AD检测性能的鲁棒性,特别是当训练和测试数据中存在传感器噪声时。除了数据增强,我还探讨了对比损失是否可以进一步增强鲁棒性,结果表明,当我们有数据增强时,可能不需要对比学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信