Aritificial Inteligence Challenges in COPD management: a review

L. S. Becirovic, Amar Deumic, L. G. Pokvic, A. Badnjević
{"title":"Aritificial Inteligence Challenges in COPD management: a review","authors":"L. S. Becirovic, Amar Deumic, L. G. Pokvic, A. Badnjević","doi":"10.1109/BIBE52308.2021.9635374","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms have been drawing attention in lung disease research. However, due to their algorithmic learning complexity and the variability of their architecture, there is an ongoing need to analyze their performance. This study reviews the input parameters and the performance of machine learning applied to diagnosis of chronic obstructive pulmonary disease (COPD). One research focus of this study was on clearly identifying problems and issues related to the implementation of machine learning in clinical studies. Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol, 179, 1032, and 36,500 titles were identified from the PubMed, Scopus, and Google Scholar databases respectively. Studies that used machine learning to detect COPD and provided performance measures were included in our analysis. In the final analysis, 24 studies were included. The analysis of machine learning methods to detect COPD reveals the limited usage of the methods and the lack of standards that hinder the implementation of machine learning in clinical applications. The performance of machine learning for diagnosis of COPD was considered satisfactory for several studies; however, given the limitations indicated in our study, further studies are warranted to extend the potential use of machine learning to clinical settings.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Machine learning algorithms have been drawing attention in lung disease research. However, due to their algorithmic learning complexity and the variability of their architecture, there is an ongoing need to analyze their performance. This study reviews the input parameters and the performance of machine learning applied to diagnosis of chronic obstructive pulmonary disease (COPD). One research focus of this study was on clearly identifying problems and issues related to the implementation of machine learning in clinical studies. Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol, 179, 1032, and 36,500 titles were identified from the PubMed, Scopus, and Google Scholar databases respectively. Studies that used machine learning to detect COPD and provided performance measures were included in our analysis. In the final analysis, 24 studies were included. The analysis of machine learning methods to detect COPD reveals the limited usage of the methods and the lack of standards that hinder the implementation of machine learning in clinical applications. The performance of machine learning for diagnosis of COPD was considered satisfactory for several studies; however, given the limitations indicated in our study, further studies are warranted to extend the potential use of machine learning to clinical settings.
人工智能在COPD管理中的挑战:综述
机器学习算法在肺部疾病研究中备受关注。然而,由于其算法学习的复杂性和体系结构的可变性,对其性能的分析是一个持续的需求。本研究综述了用于慢性阻塞性肺疾病(COPD)诊断的机器学习的输入参数和性能。本研究的一个研究重点是清楚地识别与临床研究中实施机器学习相关的问题和问题。按照PRISMA(系统评价和荟萃分析的首选报告项目)协议,分别从PubMed、Scopus和Google Scholar数据库中确定了179、1032和36,500个标题。使用机器学习检测COPD并提供性能指标的研究纳入了我们的分析。在最后的分析中,纳入了24项研究。对检测COPD的机器学习方法的分析表明,这些方法的使用有限,缺乏标准,阻碍了机器学习在临床应用中的实施。在一些研究中,机器学习诊断COPD的表现被认为是令人满意的;然而,鉴于我们研究中指出的局限性,有必要进一步研究将机器学习的潜在应用扩展到临床环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信