Dongdong Chen, Yu Zhang, Younhee Choi, M. Lee, S. Ko
{"title":"A 32-bit Decimal Floating-Point Logarithmic Converter","authors":"Dongdong Chen, Yu Zhang, Younhee Choi, M. Lee, S. Ko","doi":"10.1109/ARITH.2009.22","DOIUrl":null,"url":null,"abstract":"This paper presents a new design and implementation of a 32-bit decimal floating-point (DFP) logarithmic converter based on the digit-recurrence algorithm. The converter can calculate accurate logarithms of 32-bit DFP numbers which are defined in the IEEE 754-2008 standard. Redundant digit e1 is obtained by look-up table in the first iteration and the rest redundant digits ej are selected by rounding the scaled remainder during the succeeding iterations. The sequential architecture of the proposed 32-bit DFP logarithmic converter is implemented on Xilinx Virtex-II Pro P30 FPGA device and then synthesized with TMSC 0.18-um standard cell library. The implementation results indicate that the maximum frequency of the proposed architecture is 47.7 MHz in FPGA and 107.9 MHz in TMSC 0.18-um technology. The faithful 32-bit DFP logarithm results can be obtained in 18 cycles.","PeriodicalId":301808,"journal":{"name":"2009 19th IEEE Symposium on Computer Arithmetic","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 19th IEEE Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2009.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
This paper presents a new design and implementation of a 32-bit decimal floating-point (DFP) logarithmic converter based on the digit-recurrence algorithm. The converter can calculate accurate logarithms of 32-bit DFP numbers which are defined in the IEEE 754-2008 standard. Redundant digit e1 is obtained by look-up table in the first iteration and the rest redundant digits ej are selected by rounding the scaled remainder during the succeeding iterations. The sequential architecture of the proposed 32-bit DFP logarithmic converter is implemented on Xilinx Virtex-II Pro P30 FPGA device and then synthesized with TMSC 0.18-um standard cell library. The implementation results indicate that the maximum frequency of the proposed architecture is 47.7 MHz in FPGA and 107.9 MHz in TMSC 0.18-um technology. The faithful 32-bit DFP logarithm results can be obtained in 18 cycles.