Face detection using discriminating feature analysis and support vector machine in video

P. Shih, Chengjun Liu
{"title":"Face detection using discriminating feature analysis and support vector machine in video","authors":"P. Shih, Chengjun Liu","doi":"10.1109/ICPR.2004.1334236","DOIUrl":null,"url":null,"abstract":"This work presents a novel face detection method in video by using discriminating feature analysis (DFA) and support vector machine (SVM). Our method first incorporates temporal and skin color information to locate the field of interests. Then the face class is modelled using a small training set and the nonface class is defined by choosing nonface images that lie close to the face class. Finally, the SVM classifier together with Bayesian statistical analysis procedure applies the efficient features defined by DFA for face and nonface classification. Experiments using both still images and video streams show the feasibility of our new face detection method. In particular, when using 92 images (containing 282 faces) from the MIT-CMU test sets, our method achieves 98.2% correct face detection accuracy with 2 false detections. When using video streams, our method detects faces reliably with computational efficiency of more than 20 frames per second.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

This work presents a novel face detection method in video by using discriminating feature analysis (DFA) and support vector machine (SVM). Our method first incorporates temporal and skin color information to locate the field of interests. Then the face class is modelled using a small training set and the nonface class is defined by choosing nonface images that lie close to the face class. Finally, the SVM classifier together with Bayesian statistical analysis procedure applies the efficient features defined by DFA for face and nonface classification. Experiments using both still images and video streams show the feasibility of our new face detection method. In particular, when using 92 images (containing 282 faces) from the MIT-CMU test sets, our method achieves 98.2% correct face detection accuracy with 2 false detections. When using video streams, our method detects faces reliably with computational efficiency of more than 20 frames per second.
基于区别特征分析和支持向量机的视频人脸检测
本文提出了一种基于区别特征分析(DFA)和支持向量机(SVM)的视频人脸检测方法。我们的方法首先结合时间和肤色信息来定位感兴趣的领域。然后使用一个小的训练集对人脸类进行建模,并通过选择靠近人脸类的非人脸图像来定义非人脸类。最后,SVM分类器结合贝叶斯统计分析程序,利用DFA定义的有效特征对人脸和非人脸进行分类。在静态图像和视频流上的实验表明了该方法的可行性。特别是,当使用来自MIT-CMU测试集的92张图像(包含282张人脸)时,我们的方法实现了98.2%的正确人脸检测准确率和2个错误检测。当使用视频流时,我们的方法以每秒20帧以上的计算效率可靠地检测人脸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信