Spherical Harmonic Transforms and Convolutions on the GPU

A. Brunton, J. Lang, E. Dubois
{"title":"Spherical Harmonic Transforms and Convolutions on the GPU","authors":"A. Brunton, J. Lang, E. Dubois","doi":"10.1080/2151237X.2010.10390649","DOIUrl":null,"url":null,"abstract":"Abstract We present implementations of the spherical harmonic forward and inverse transforms on the GPU using CUDA. We implement two algorithms for the SH transform: the direct method and the semi-naive. Our direct method has low storage requirements due to our on-the-fly computation of the associated Legendre functions, and it can perform large transform sizes and non-power-of-two sizes. Our semi-naive implementation is faster than state-of-the-art CPU implementations by a factor of between five and six, depending on the transform size. We target our implementations at spherical panoramic image processing where a large number of basis functions are required. We apply our tool to decompose panoramic images into an overcomplete spherical wavelet model for spherical convolution. We present timings, errors, and application examples of our implementations.","PeriodicalId":354935,"journal":{"name":"Journal of Graphics, GPU, and Game Tools","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graphics, GPU, and Game Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2151237X.2010.10390649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract We present implementations of the spherical harmonic forward and inverse transforms on the GPU using CUDA. We implement two algorithms for the SH transform: the direct method and the semi-naive. Our direct method has low storage requirements due to our on-the-fly computation of the associated Legendre functions, and it can perform large transform sizes and non-power-of-two sizes. Our semi-naive implementation is faster than state-of-the-art CPU implementations by a factor of between five and six, depending on the transform size. We target our implementations at spherical panoramic image processing where a large number of basis functions are required. We apply our tool to decompose panoramic images into an overcomplete spherical wavelet model for spherical convolution. We present timings, errors, and application examples of our implementations.
GPU上的球谐变换和卷积
提出了利用CUDA在GPU上实现球谐正逆变换的方法。我们实现了两种SH变换算法:直接法和半朴素法。我们的直接方法由于实时计算相关的勒让德函数而具有较低的存储需求,并且可以执行大的变换大小和非2次幂大小。我们的半幼稚实现比最先进的CPU实现要快5到6倍,这取决于转换的大小。我们的目标是实现球面全景图像处理,其中需要大量的基函数。我们应用我们的工具将全景图像分解成一个过完备的球面小波模型进行球面卷积。我们给出了实现的时间、错误和应用程序示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信