Empirical Study on Multi Convolutional Layer-based Convolutional Neural Network Classifier for Plant Leaf Disease Detection

C. Sunil, C. Jaidhar, Nagamma Patil
{"title":"Empirical Study on Multi Convolutional Layer-based Convolutional Neural Network Classifier for Plant Leaf Disease Detection","authors":"C. Sunil, C. Jaidhar, Nagamma Patil","doi":"10.1109/ICIIS51140.2020.9342729","DOIUrl":null,"url":null,"abstract":"Recognizing the plant disease automatically in real-time by examining a plant leaf image is highly essential for farmers. This work focuses on an empirical study on Multi Convolutional Layer-based Convolutional Neural Network (MCLCNN) classifier to measure the detection efficacy of MCLCNN on recognizing plant leaf image as being healthy or diseased. To achieve this, a set of experiments were conducted with three distinct plant leaf datasets. Each of the experiments were conducted by setting kernel size of $3\\times 3$ and each experiment was conducted independently with different epochs i.e., 50, 75, 100, 125, and 150. The MCLCNN classifier achieved minimum accuracy of 87.47% with 50 epochs and maximum accuracy of 99.25% with 150 epochs for the Peach plant leaves.","PeriodicalId":352858,"journal":{"name":"2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIS51140.2020.9342729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Recognizing the plant disease automatically in real-time by examining a plant leaf image is highly essential for farmers. This work focuses on an empirical study on Multi Convolutional Layer-based Convolutional Neural Network (MCLCNN) classifier to measure the detection efficacy of MCLCNN on recognizing plant leaf image as being healthy or diseased. To achieve this, a set of experiments were conducted with three distinct plant leaf datasets. Each of the experiments were conducted by setting kernel size of $3\times 3$ and each experiment was conducted independently with different epochs i.e., 50, 75, 100, 125, and 150. The MCLCNN classifier achieved minimum accuracy of 87.47% with 50 epochs and maximum accuracy of 99.25% with 150 epochs for the Peach plant leaves.
基于多卷积层的卷积神经网络分类器在植物叶片病害检测中的实证研究
通过检查植物叶片图像来自动实时识别植物病害对农民来说是非常必要的。本文主要对基于多层卷积神经网络(Multi Convolutional Layer-based Convolutional Neural Network, MCLCNN)的分类器进行实证研究,以衡量MCLCNN对植物叶片图像健康或病变的检测效果。为了实现这一目标,我们用三种不同的植物叶片数据集进行了一组实验。每个实验都设置kernel size为$3\ × 3$,每个实验分别在不同的epoch(50、75、100、125、150)独立进行。对于桃树叶片,MCLCNN分类器在50个epoch的情况下准确率最低为87.47%,在150个epoch的情况下准确率最高为99.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信