Extended Finite-State Machine Induction Using SAT-Solver

V. Ulyantsev, F. Tsarev
{"title":"Extended Finite-State Machine Induction Using SAT-Solver","authors":"V. Ulyantsev, F. Tsarev","doi":"10.1109/ICMLA.2011.166","DOIUrl":null,"url":null,"abstract":"In the paper we describe the extended finite-state machine (EFSM) induction method that uses SAT-solver. Input data for the induction algorithm is a set of test scenarios. The algorithm consists of several steps: scenarios tree construction, compatibility graph construction, Boolean formula construction, SAT-solver invocation and finite-state machine construction from satisfying assignment. These extended finite-state machines can be used in automata-based programming, where programs are designed as automated controlled objects. Each automated controlled object contains a finite-state machine and a controlled object. The method described has been tested on randomly generated scenario sets of size from 250 to 2000 and on the alarm clock controlling EFSM induction problem where it has greatly outperformed genetic algorithm.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

In the paper we describe the extended finite-state machine (EFSM) induction method that uses SAT-solver. Input data for the induction algorithm is a set of test scenarios. The algorithm consists of several steps: scenarios tree construction, compatibility graph construction, Boolean formula construction, SAT-solver invocation and finite-state machine construction from satisfying assignment. These extended finite-state machines can be used in automata-based programming, where programs are designed as automated controlled objects. Each automated controlled object contains a finite-state machine and a controlled object. The method described has been tested on randomly generated scenario sets of size from 250 to 2000 and on the alarm clock controlling EFSM induction problem where it has greatly outperformed genetic algorithm.
基于sat求解器的扩展有限状态机感应
本文描述了基于sat求解器的扩展有限状态机(EFSM)感应方法。归纳算法的输入数据是一组测试场景。该算法包括场景树构造、兼容图构造、布尔公式构造、sat求解器调用和从满足赋值构造有限状态机几个步骤。这些扩展的有限状态机可用于基于自动机的编程,其中程序被设计为自动控制对象。每个自动化被控对象都包含一个有限状态机和一个被控对象。所描述的方法已经在250到2000个随机生成的场景集上进行了测试,并在闹钟控制EFSM诱导问题上进行了测试,其中它大大优于遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信