On Model-free Reinforcement Learning for Switched Linear Systems: A Subspace Clustering Approach

Hao Li, Hua Chen, Wei Zhang
{"title":"On Model-free Reinforcement Learning for Switched Linear Systems: A Subspace Clustering Approach","authors":"Hao Li, Hua Chen, Wei Zhang","doi":"10.1109/ALLERTON.2018.8635985","DOIUrl":null,"url":null,"abstract":"In this paper, we study optimal control of switched linear systems using reinforcement learning. Instead of directly applying existing model-free reinforcement learning algorithms, we propose a Q-learning-based algorithm designed specifically for discrete time switched linear systems. Inspired by the analytical results from optimal control literature, the Q function in our algorithm is approximated by a point-wise minimum form of a finite number of quadratic functions. An associated update scheme based on subspace clustering for such an approximation is also developed which preserves the desired structure during the training process. Numerical examples for both low-dimensional and high-dimensional switched linear systems are provided to demonstrate the performance of our algorithm.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8635985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we study optimal control of switched linear systems using reinforcement learning. Instead of directly applying existing model-free reinforcement learning algorithms, we propose a Q-learning-based algorithm designed specifically for discrete time switched linear systems. Inspired by the analytical results from optimal control literature, the Q function in our algorithm is approximated by a point-wise minimum form of a finite number of quadratic functions. An associated update scheme based on subspace clustering for such an approximation is also developed which preserves the desired structure during the training process. Numerical examples for both low-dimensional and high-dimensional switched linear systems are provided to demonstrate the performance of our algorithm.
切换线性系统的无模型强化学习:一种子空间聚类方法
本文采用强化学习的方法研究了切换线性系统的最优控制。我们提出了一种专门为离散时间切换线性系统设计的基于q学习的算法,而不是直接应用现有的无模型强化学习算法。受最优控制文献解析结果的启发,我们的算法中的Q函数由有限个二次函数的逐点最小形式逼近。本文还提出了一种基于子空间聚类的相关更新方案,该方案在训练过程中保持了期望的结构。给出了低维和高维切换线性系统的数值算例来验证算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信