M. Kloosterman, M. Boonstra, F. Asselbergs, P. Loh, T. Oostendorp, P. V. Dam
{"title":"Modeling Structural Abnormalities in Equivalent Dipole Layer Based ECG Simulations","authors":"M. Kloosterman, M. Boonstra, F. Asselbergs, P. Loh, T. Oostendorp, P. V. Dam","doi":"10.22489/CinC.2022.160","DOIUrl":null,"url":null,"abstract":"The relation between abnormal ventricular activation and corresponding ECGs still requires additional understanding. The presence of disease breaks the equivalence in equivalent dipole layer-based $ECG$ simulations. In this study, endocardial and epicardial patches were introduced to simulate abnormal wave propagation in different types of substrates. The effect of these different types of substrates on the $QRS$ complex was assessed using a boundary element method forward $heart/torso$ and a 64-lead body surface potential map (BSPM). Activation was simulated using the fastest route algorithm with six endocardial foci and $QRS$ complexes corresponding to abnormal patch activation were compared to the $QRS$ complexes of normal ventricular activation using correlation coefficient $(CC)$. Abnormal patch activation affected both $QRS$ morphology and duration. These $QRS$ changes were observed in different leads, depending on substrate location. With insights obtained in such simulations, risk-stratification and understanding of disease progression may be further enhanced.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The relation between abnormal ventricular activation and corresponding ECGs still requires additional understanding. The presence of disease breaks the equivalence in equivalent dipole layer-based $ECG$ simulations. In this study, endocardial and epicardial patches were introduced to simulate abnormal wave propagation in different types of substrates. The effect of these different types of substrates on the $QRS$ complex was assessed using a boundary element method forward $heart/torso$ and a 64-lead body surface potential map (BSPM). Activation was simulated using the fastest route algorithm with six endocardial foci and $QRS$ complexes corresponding to abnormal patch activation were compared to the $QRS$ complexes of normal ventricular activation using correlation coefficient $(CC)$. Abnormal patch activation affected both $QRS$ morphology and duration. These $QRS$ changes were observed in different leads, depending on substrate location. With insights obtained in such simulations, risk-stratification and understanding of disease progression may be further enhanced.