An MSE-based theoretical limit to the performance of linear source extraction and equalization methods in undermodeled scenarios

Everton Z. Nadalin, R. Attux, J. Romano, L. Duarte, R. Suyama
{"title":"An MSE-based theoretical limit to the performance of linear source extraction and equalization methods in undermodeled scenarios","authors":"Everton Z. Nadalin, R. Attux, J. Romano, L. Duarte, R. Suyama","doi":"10.1109/ITS.2014.6947970","DOIUrl":null,"url":null,"abstract":"This paper presents a simple and, to a certain extent, surprising result for Source Separation in an underdetermined scenario: without loss of generality, under the restriction that all sources have unit power, the sum of the residual mean-squared errors (MMSE) obtained after the estimation of all the sources is given by the difference between the number of sources and the number of sensors. This result can be extended to the case of single-input single-output (SISO) equalization, in which the obtained limit depends on the relationship between the length of the channel and equalizer impulse responses.","PeriodicalId":359348,"journal":{"name":"2014 International Telecommunications Symposium (ITS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Telecommunications Symposium (ITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.2014.6947970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a simple and, to a certain extent, surprising result for Source Separation in an underdetermined scenario: without loss of generality, under the restriction that all sources have unit power, the sum of the residual mean-squared errors (MMSE) obtained after the estimation of all the sources is given by the difference between the number of sources and the number of sensors. This result can be extended to the case of single-input single-output (SISO) equalization, in which the obtained limit depends on the relationship between the length of the channel and equalizer impulse responses.
基于mse的未建模情景下线性源提取和均衡方法性能的理论限制
本文给出了欠定情况下源分离的一个简单而又在一定程度上令人惊讶的结果:在不丧失一般性的情况下,在所有源都具有单位功率的限制下,所有源估计后得到的残差均方误差(MMSE)的和由源数量与传感器数量之差给出。这个结果可以推广到单输入单输出(SISO)均衡的情况,在这种情况下,得到的极限取决于通道长度和均衡器脉冲响应之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信