Probabilistic Gaze Imitation and Saliency Learning in a Robotic Head

A. P. Shon, David B. Grimes, Chris L. Baker, Matthew W. Hoffman, Shengli Zhou, Rajesh P. N. Rao
{"title":"Probabilistic Gaze Imitation and Saliency Learning in a Robotic Head","authors":"A. P. Shon, David B. Grimes, Chris L. Baker, Matthew W. Hoffman, Shengli Zhou, Rajesh P. N. Rao","doi":"10.1109/ROBOT.2005.1570548","DOIUrl":null,"url":null,"abstract":"Imitation is a powerful mechanism for transferring knowledge from an instructor to a naïve observer, one that is deeply contingent on a state of shared attention between these two agents. In this paper we present Bayesian algorithms that implement the core of an imitation learning framework. We use gaze imitation, coupled with task-dependent saliency learning, to build a state of shared attention between the instructor and observer. We demonstrate the performance of our algorithms in a gaze following and saliency learning task implemented on an active vision robotic head. Our results suggest that the ability to follow gaze and learn instructor-and task-specific saliency models could play a crucial role in building systems capable of complex forms of human-robot interaction.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Imitation is a powerful mechanism for transferring knowledge from an instructor to a naïve observer, one that is deeply contingent on a state of shared attention between these two agents. In this paper we present Bayesian algorithms that implement the core of an imitation learning framework. We use gaze imitation, coupled with task-dependent saliency learning, to build a state of shared attention between the instructor and observer. We demonstrate the performance of our algorithms in a gaze following and saliency learning task implemented on an active vision robotic head. Our results suggest that the ability to follow gaze and learn instructor-and task-specific saliency models could play a crucial role in building systems capable of complex forms of human-robot interaction.
机器人头部的概率凝视模仿和显著性学习
模仿是一种将知识从指导者传递给naïve观察者的强大机制,这种机制在很大程度上取决于这两个主体之间共享注意力的状态。在本文中,我们提出了实现模仿学习框架核心的贝叶斯算法。我们使用凝视模仿,再加上任务依赖的显著性学习,在讲师和观察者之间建立一种共享注意力的状态。我们在一个主动视觉机器人头部的注视跟踪和显著性学习任务中展示了我们的算法的性能。我们的研究结果表明,跟随注视和学习特定于教师和任务的显著性模型的能力在构建能够进行复杂形式的人机交互的系统中发挥了至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信