Scene Cut: Class-Specific Object Detection and Segmentation in 3D Scenes

Jan Knopp, Mukta Prasad, L. Gool
{"title":"Scene Cut: Class-Specific Object Detection and Segmentation in 3D Scenes","authors":"Jan Knopp, Mukta Prasad, L. Gool","doi":"10.1109/3DIMPVT.2011.30","DOIUrl":null,"url":null,"abstract":"In this paper we present a method to combine the detection and segmentation of object categories from 3D scenes. In the process, we combine the top-down cues available from object detection technique of Implicit Shape Models and the bottom-up power of Markov Random Fields for the purpose of segmentation. While such approaches have been tried for the 2D image problem domain before, this is the first application of such a method in 3D. 3D scene understanding is prone to many problems different from 2D owing to problems from noise, lack of distinctive high-frequency feature information, mesh parametrization problems etc. Our method enables us to localize objects of interest for more purposeful meshing and subsequent scene understanding.","PeriodicalId":330003,"journal":{"name":"2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIMPVT.2011.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In this paper we present a method to combine the detection and segmentation of object categories from 3D scenes. In the process, we combine the top-down cues available from object detection technique of Implicit Shape Models and the bottom-up power of Markov Random Fields for the purpose of segmentation. While such approaches have been tried for the 2D image problem domain before, this is the first application of such a method in 3D. 3D scene understanding is prone to many problems different from 2D owing to problems from noise, lack of distinctive high-frequency feature information, mesh parametrization problems etc. Our method enables us to localize objects of interest for more purposeful meshing and subsequent scene understanding.
场景切割:3D场景中特定类别的对象检测和分割
本文提出了一种将三维场景中物体类别的检测与分割相结合的方法。在此过程中,我们结合了隐式形状模型的目标检测技术的自顶向下线索和马尔科夫随机场的自底向上能力来进行分割。虽然这种方法之前已经在二维图像问题领域尝试过,但这是这种方法在三维图像领域的首次应用。由于噪声、缺乏鲜明的高频特征信息、网格参数化等问题,三维场景理解容易出现许多不同于二维场景的问题。我们的方法使我们能够定位感兴趣的对象,以便更有目的的网格划分和随后的场景理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信